а) Отложим эти вектора от точки А. Тогда получится
АА1, АА2, ААЗ , но эти вектора, очевидно, лежат в
одной плоскости. Поэтому AA1, CC1, ВВ1 компланарные
вектора (рис. 213).
б) Эти векторы уже отложены от одной точки А.
Векторы AB и AD лежат в плоскости ABCD, а вектор
AA1 не лежит в этой плоскости. Поэтому AA1, AB, AD
не компланарны. В) Отложим эти векторы от точки
А. Тогда получатся векторы A1A2, AC, AA2, где А2
симметричная точка к A1 относительно точки А.
Очевидно, что данные три вектора лежат в плоскости
AA1C1C. Поэтому и исходные вектора компланарны. Г)
Отложив эти вектора от точки А получим вектора AD,
AA1, AB, которые не компланарны (см. п. б). Поэтому и
вектора AD, CC1, А1В1 не компланарны.
Пошаговое объяснение:
лайк нажми и лутший ответ
Дано:
(O;R) - описанная окружность
C=50π
АВ=ВС
ВК⊥АС
ВК=32см
Найти Р (периметр)
Решение.
1) C=50π
C=2πR
2πR=50π
R=25 см
AO=OB=R=25 см
2) BK ⊥ AC => ∠AKB=90°
3) BK=32 см
OK=BK-OB
OK=32 - 25 = 7см
3) Рассмотрим ΔAOB, в нем =>
AO=25 см
OK=7 см
∠AKO=90°
По теореме Пифагора
AK² = AO² - OK²
AK²=625-49 = 576
AK=√576 = 24 см
4) AC = 2AK= 48 см
5) В ΔABK => ∠АКВ=90°
AB² = AK² + BK²
AB² =576+1024 =1600
AB = √1600 = 40 см
AB=BC=40 см
6) 40+40+48=128 см - периметр ΔАВС.
Вiдповiдь: 128 см
а) Отложим эти вектора от точки А. Тогда получится
АА1, АА2, ААЗ , но эти вектора, очевидно, лежат в
одной плоскости. Поэтому AA1, CC1, ВВ1 компланарные
вектора (рис. 213).
б) Эти векторы уже отложены от одной точки А.
Векторы AB и AD лежат в плоскости ABCD, а вектор
AA1 не лежит в этой плоскости. Поэтому AA1, AB, AD
не компланарны. В) Отложим эти векторы от точки
А. Тогда получатся векторы A1A2, AC, AA2, где А2
симметричная точка к A1 относительно точки А.
Очевидно, что данные три вектора лежат в плоскости
AA1C1C. Поэтому и исходные вектора компланарны. Г)
Отложив эти вектора от точки А получим вектора AD,
AA1, AB, которые не компланарны (см. п. б). Поэтому и
вектора AD, CC1, А1В1 не компланарны.
Пошаговое объяснение:
лайк нажми и лутший ответ
Дано:
(O;R) - описанная окружность
C=50π
АВ=ВС
ВК⊥АС
ВК=32см
Найти Р (периметр)
Решение.
1) C=50π
C=2πR
2πR=50π
R=25 см
AO=OB=R=25 см
2) BK ⊥ AC => ∠AKB=90°
3) BK=32 см
OK=BK-OB
OK=32 - 25 = 7см
3) Рассмотрим ΔAOB, в нем =>
AO=25 см
OK=7 см
∠AKO=90°
По теореме Пифагора
AK² = AO² - OK²
AK²=625-49 = 576
AK=√576 = 24 см
4) AC = 2AK= 48 см
5) В ΔABK => ∠АКВ=90°
По теореме Пифагора
AB² = AK² + BK²
AB² =576+1024 =1600
AB = √1600 = 40 см
AB=BC=40 см
6) 40+40+48=128 см - периметр ΔАВС.
Вiдповiдь: 128 см