Ни один из них не может следить сам за собой. Ни какие двое не могут следить друг за другом. Пусть 001 следит за 003, тогда 003 следит за 002. 002 следит за 001, но тогда 003 следит за тем, кто следит за 001, а не за тем, кто следит за 004. Противоречие. Пусть 001 следит за 004, тогда 004 следит за 002, 002 за 005, 005 за 003, 003 за 001 и одновременно за 006. Противоречие. Пусть 001 следит за 005. Тогда 005 за 002, 002 за 006, 006 за 003, 003 за 007, 007 за 004, 004 за 001. Здесь никаких противоречий нет. ответ: 005 следит за 002.
№1. а) АВО и СDO равны (они накрест лежащие при параллельных прямых АВ и CD и секущей BD ), аналогично относительно углов BAO и DCO (накр. леж. при параллельных прямых AB и CD и секущей АС) . Таким образом, треугольники АОВ и СОD подобны (по двум углам) , а у подобных треугольников соответствующие стороны пропорциональны. Значит АО: ОС=ВО: OD б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)
Ни какие двое не могут следить друг за другом.
Пусть 001 следит за 003, тогда 003 следит за 002.
002 следит за 001, но тогда 003 следит за тем, кто следит за 001, а не за тем, кто следит за 004. Противоречие.
Пусть 001 следит за 004, тогда 004 следит за 002, 002 за 005,
005 за 003, 003 за 001 и одновременно за 006. Противоречие.
Пусть 001 следит за 005. Тогда 005 за 002, 002 за 006,
006 за 003, 003 за 007, 007 за 004, 004 за 001.
Здесь никаких противоречий нет.
ответ: 005 следит за 002.
б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)