Чтобы рассчитать, сколько литров молока можно разлить без остатка как в 10 литровые так и 12 литровые бидоны, нужно найти наименьшее общее кратное (НОК) для этих двух чисел. Разложим числа 10 и 12 на множители:
10 = 2 * 5.
12 = 2 * 2 * 3.
Наименьшее общее кратное (НОК) для этих двух чисел равно:
2 * 2 * 3 * 5 = 60.
Без остатка можно разлить как в 10 литровые так и в 12 литровые бидоны 60 литров молока.
ответ: без остатка можно разлить как в 10 литровые так и в 12 литровые бидоны 60 литров молока. Так написано много где, и я тоже так думаю)
Обозначим число N. Нам известно: N+15 = 22*k; N = 22*k-15 = 22(k-1)+22-15 = 22(k-1)+7 N+22 = 15*m; N = 15*m-22 = 15(m-2)+30-22 = 15(m-2)+8. Число N делится на 22 с остатком 7 и на 15 с остатком 8. Так как N делится на чётное число 22 с нечетным остатком 7, то оно нечетное. Рассмотрим число N-8=15(m-2) N-8, также как и N, нечетное. Если оно делится на 15 и при этом нечетное, то оно кончается на 5. Тогда N кончается на 5+8=13, то есть на 3. А число N-7 кончается на 13-7=6. Итак, N-7=22(k-1), кончается на 6. Тогда k-1 кончается на 6/2=3. Наименьшее число, кончающееся на 3, это и есть 3. k-1=3; N-7=22(k-1)=22*3=66. N-8=66-1=65 - не делится на 15, поэтому не подходит. Следующее число, кончающееся на 3, это 13. k-1=13; N-7=22*13=286. N-8=286-1=285=15*19 - делится на 15, поэтому подходит. N = 285+8 = 293. Проверка. N+15 = 308 = 22*14 N+22 = 315 = 15*21 Все правильно.
Чтобы рассчитать, сколько литров молока можно разлить без остатка как в 10 литровые так и 12 литровые бидоны, нужно найти наименьшее общее кратное (НОК) для этих двух чисел. Разложим числа 10 и 12 на множители:
10 = 2 * 5.
12 = 2 * 2 * 3.
Наименьшее общее кратное (НОК) для этих двух чисел равно:
2 * 2 * 3 * 5 = 60.
Без остатка можно разлить как в 10 литровые так и в 12 литровые бидоны 60 литров молока.
ответ: без остатка можно разлить как в 10 литровые так и в 12 литровые бидоны 60 литров молока. Так написано много где, и я тоже так думаю)
Нам известно:
N+15 = 22*k; N = 22*k-15 = 22(k-1)+22-15 = 22(k-1)+7
N+22 = 15*m; N = 15*m-22 = 15(m-2)+30-22 = 15(m-2)+8.
Число N делится на 22 с остатком 7 и на 15 с остатком 8.
Так как N делится на чётное число 22 с нечетным остатком 7, то оно нечетное.
Рассмотрим число N-8=15(m-2)
N-8, также как и N, нечетное.
Если оно делится на 15 и при этом нечетное, то оно кончается на 5.
Тогда N кончается на 5+8=13, то есть на 3.
А число N-7 кончается на 13-7=6.
Итак, N-7=22(k-1), кончается на 6. Тогда k-1 кончается на 6/2=3.
Наименьшее число, кончающееся на 3, это и есть 3.
k-1=3; N-7=22(k-1)=22*3=66.
N-8=66-1=65 - не делится на 15, поэтому не подходит.
Следующее число, кончающееся на 3, это 13.
k-1=13; N-7=22*13=286.
N-8=286-1=285=15*19 - делится на 15, поэтому подходит.
N = 285+8 = 293.
Проверка.
N+15 = 308 = 22*14
N+22 = 315 = 15*21
Все правильно.