1.Преобразовать в многочлен:
а) (x + 8)2; в) (5a – 2)(5a + 2);
б) (y – 7x)2; г) (c – 4b3)(c + 2b3).
2. Разложить на множители:
а) x2 – 81; в) 49x4y2 – 169c2;
б) y2 – 6a + 9; г) (x + 1)2 – (x – 1)2.
3. У выражение:
(c + 6)2 – c(c + 12).
4. Решите уравнение:
а) (x + 7)2 – (x – 4)(x + 4) = 65;
б) 49y2 – 64 = 0.
5. Выполнить действия:
а) (4a2 + b2)(2a – b)(2a + b);
б) (b2c3 – 2a2)(b2c3 + 2a2).
Первый движется со скоростью 240:3 = 80 км в ч
Второй движется со скоростью 80-20 = 60 км в ч
Путь, который должен пройти 2-ой автом. обозначим за х км
Тогда путь 1-го до места встречи будет соответственно (х+200) км - помним, что 240 из 440 он уже проехал!
Время до места встречи одинаково для обоих автомобилей с этих точек старта
Значит составляем равенство по времени через путь и время
х : 60 = (х+200) : 80
х : 3 = (х+200): 4
4х = (х+200)*3 = 3х+600
х=600 км - от пункта В
А от пункта А соответственно 600 км+440 км = 1040 км
Я подумал... Хорошенько подумал :-) И вот до чего я додумался... Постараюсь изложить лаконично:
В квадрате (или решетке) NxN имеется N строк и N колонок. Предположим, что мы кодируем ход вправо как единицу "1", а ход вниз - как ноль "0". Любой допустимый путь из левого верхнего угла квадрата (т.е. решетки) в нижний состоит из N переходов вправо и N переходов вниз. Тогда каждому допустимому пути будет соответствовать двоичная последовательность длины 2*N, в которой обязательно будут присутствовать N единичек "1" и N нулей "0". Остается только определить, сколько таких последовательностей можно построить для квадрата NxN.
Попытаемся, к примеру, расставить только N единичек "1" на соответствующие позиции в последовательности из 2*N символов. Оставшиеся места мы автоматически заполним нулями "0". Первую "1" можно поставить на любую из 2*N позиций, вторую - на любую из оставшихся 2*N - 1 позиций и т.д. Количество таких размещений, как известно, будет (2*N)*(2*N - 1)*(2*N - 2)*...*(2*N - (N - 1)) = C(n=2*N, k=N) = (2*N)!/(N!*(2*N - N)!), где C(n, k) означает количество размещений из n по k.
Итак, количество путей в квадрате NxN определяется по формуле P(N) = C(2*N, N) = (2*N)!/(N!*(2*N - N)!) = (2*N)!/(N!*N!) = (2*N)!/((N!)^2) (*)
Подставляя в формулу последовательно значения N = 1, 2, 3 и 4, находим количество путей для квадратов 1x1, 2x2, 3x3 и 4x4: P(1) = 2, P(2) = 6, P(3) = 20 и P(4) = 70.
По условию нам нужно также найти такое минимальное N, при котором P(N) > 1000000 = 10^6.
Найдем его при вычисления на компьютере (альтернативно можно использовать формулы для приближенного вычисления факториала):
P(N) = (2*N)!/((N!)^2) > 1000000 = 10^6
Вычислением нескольких последовательных значений P(N) мы убеждаемся, что P(N=11) = 705432 < 1000000 < P(N=12) = 2704156. Следовательно, Бобу нужно взять квадрат (или решетку) размером 12x12.
ответ: N = 12
P.S.: Патент, на мой взгляд, довольно несуразный, хотя чем бы Боб не тешился... :-) Удачи тебе, Боб! :-)