1. В ящике лежат 15 яблок, различающихся только цветом, причем из них 6 зеленых, 5 красных и 4 желтых. Из ящика берут наудачу 3 яблока Вычислить вероятность того, что все 3 яблока: а) зеленые; б) красные; в) желтые; г) одного цвета.
2. Наудачу выбрано натуральное число, не превосходящее 100. Какова вероятность того, что выбранное число при делении на 8 дает в остатке 2?
3. Из цифр 1, 2, 3, 4, 5 выбирается одна, а из оставшихся — вторая. Найдите вероятность того, что будет выбрана нечетная цифра: а) первый раз; б) второй раз; в) оба раза.
С ПОДРОБНЫМ РЕШЕНИЕМ
f(x₀+Δx)≈f(x₀)+d[f(x₀)]
По условию задания имеем функцию f(x)=∛x, необходимо вычислить приближённое значение f(8,1)=∛8,1.
Число 8,1 представим в виде 8+0,1, то есть х₀=8 Δх=0,1.
Вычислим значение функции в точке х₀=8
f(8)=∛8=2
Дифференциал в точке находится по формуле
d[f(x₀)]=f'(x₀)*Δx
Находим производную функции f(x)=∛x
f'(x)=(∛x)'=
найдём её значение в точке х₀=8
f'(8)=
d[f(8)]=0,0833*0,1=0,0083
Подставляем найденные значения в формулу вычисления с дифференциала и получаем
f(8,1)=∛8,1≈2+0,0083=2,0083
- событие "вытащена деталь под номером i".
- событие "вытащенная деталь бракована".
- соответствующие вероятности брака.
- производительности станков.
Будем рассматривать ситуацию, когда произведено достаточно много деталей.
По условию известно следующее:
Сразу заметим, что
Пусть единица времени. Тогда всего в ящике находится деталей, а вероятности событий вычисляются как отношения количества подходящих деталей ко всем деталям в ящике, то есть
По формуле полной вероятности имеем: