1. Запишите с переменных Х, Y переместительное свойство: а) пересечения множеств; б) объединения множеств. 2. Используя переменные Х, Y, Z, запишите сочетательное свойство: а)пересечения множеств; б) объединения множеств.
Количество задач, которые осталось решить Пете и Коле относится как 5:1 Т.е., Пете осталось решить 5 частей задач (в 5 раз больше), а Коле 1 часть задач. 1) 159-123=36 (задач) - разница между решенными Колей и Петей задачами. 2) 5-1=4 (части) - осталось решить Пете, чтобы догнать Колю. 3) 36:4=9 (задач) - осталось решить Коле, а также количество задач в одной части. 4) 159+9=168 (задач) - всего задали на лето каждому из мальчиков. Из 168 задач Коля решил 159 задач (осталось решить 9 заданий) Из 168 задач Петя решил 123 задачи, осталось решить 9*5=45 заданий.
* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Т.е., Пете осталось решить 5 частей задач (в 5 раз больше), а Коле 1 часть задач.
1) 159-123=36 (задач) - разница между решенными Колей и Петей задачами.
2) 5-1=4 (части) - осталось решить Пете, чтобы догнать Колю.
3) 36:4=9 (задач) - осталось решить Коле, а также количество задач в одной части.
4) 159+9=168 (задач) - всего задали на лето каждому из мальчиков.
Из 168 задач Коля решил 159 задач (осталось решить 9 заданий)
Из 168 задач Петя решил 123 задачи, осталось решить 9*5=45 заданий.
* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано:
а) ∠А1В1С1 - линейный угол двугранного угла АВВ1С,
т.к. данная фигура - куб.
б) Надо найти угол между плоскостями
∠ADB - линейный угол двугранного угла ADD1B;
в) Проведем B1K; проведем KE || AA1; проведем диагональ квадрата ВЕ. Требуется найти линейную меру двугранного угла между
плоскостями АА1В1В и KB1BE. А1В1 ⊥ ВВ1, B1K ⊥ ВВ1.
Таким образом, ∠А1В1K - линейный угол двугранного угла ABB1K.