Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
11/84 = 0,130952381
Пошаговое объяснение:
5/21 - 3/28 = 4 * 5 - 3 * 3 / 84 = 11/84
5/21 - 3/28 -- приводим к общему знаминателю, например на 84, т.к. и 21 и 28 делятся на 84
Чтобы привести к общему знаминателю, надо и числитель домножить на то число, во сколько раз увеличивается знаминатель, например:
21 * 4 = 84 - в 4 раза нужно увеличить и числитель и знаминатель
28 * 3 = 84 - тоже самое, только в 3 раза нужно увеличить
Итак получается:5/21 - 3/28 = 5*4/84 - 3*3/84 = 20/84 - 9/84 = 11/84
Как - то так (не умею обяснять), если есть вопросы, то в коменты)
Удачи!!)