2) дүкенге 10 - бүтін төрттен бір, көгөніс әкелінді. бірінші күні барлық әкелінгенкөгөністің 60%-ы, екінші күні бірінші күні сатылған көгөністің40%-ына тең көкөніс сатылды.
Определение. любое натуральное число, на которое делится (без остатка) данное натуральное число, называется делителем данного числа. любое натуральное число, которое делится (без остатка) на данное натуральное число, называется кратным данному числу. всякое натуральное число кратно нескольким натуральным числам, самому себе и 1 или только самому себе и 1. например: число 64 кратно числам: 2, 4, 8, 16, 32, 64 и 1. следовательно, число 64 можно записать как произведение двух или более его множителей: 2 * 32 = 64 2 * 4 * 8 = 64 4 * 16 = 64 1 * 64 = 64 число 162 кратно числам: 2. 3, 6, 9, 18, 27, 54, 81, 162, 1. следовательно, число 162 можно записать как произведение двух или больше его множителей: 2 * 81 = 162 2 * 3 * 27 = 162 3 * 54 = 162 3 * 6 * 9 = 162 6 * 27 = 162 1 * 162 = 162 9 * 18 = 162 число 37 кратно числам 37 и 1. следовательно, число 37 можно записать как произведение только двух множителей: 37 * 1 = 37 число 0 (нуль) занимает особое место в разделе чисел. нет числа, которое делилось бы на нуль, так как множитель нуль в составе произведения превращает произведение в нуль. правило. нуль не относится к натуральным числам. на нуль делить нельзя.
О некотором трёхзначном числе известно, что число его десятков на 3 больше числа сотен. Пусть число сотен этого числа - х, тогда число десятков - х+3. Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3). Тогда исходное число М=100х+10(х+3)+30/(х+3) Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х Т.к. новое число превышает исходное число на 396, то имеем 1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396 3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3 3000+х²+3х-100х²-300х-30-396х-1188=0 -99х²-396х+1782=0 х²+7х-18=0 х₁*х₂=-18 х₁+х₂=-7 х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами. М=100*2+10*5+30/5=256, √М=√256=16 ответ: 16
Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3).
Тогда исходное число М=100х+10(х+3)+30/(х+3)
Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х
Т.к. новое число превышает исходное число на 396, то имеем
1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396
3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3
3000+х²+3х-100х²-300х-30-396х-1188=0
-99х²-396х+1782=0
х²+7х-18=0
х₁*х₂=-18
х₁+х₂=-7
х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами.
М=100*2+10*5+30/5=256, √М=√256=16
ответ: 16