Тметим на координатной прямой точки с координатами -3 и 2. если точка расположена между ними, то ей соответствует число, которое больше -3 и меньше 2. верно и обратное: если число х удовлетворяет условию -3< x< 2 , то оно изображается точкой, лежащей между точками с координатами -3 и 2. множество всех чисел, удовлетворяющих условию -3< x< 2, называется числовым промежутком или просто промежутком от -3 до 2 и обозначается так: (-3; 2). на рисунках изображены множество чисел х, для которых выполняется неравенство х< 10 и х≤10. эти множества представляют собой промежутки, обозначаемые соответственно (-∞; 10) и (-∞; 10]. читается так: число х принадлежит промежутку от минус бесконечности (-∞) до 10 (х< 10) и число х принадлежит промежутку от минус бесконечности (-∞) до 10, включая число 10 (х≤10). знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. промежуток [3; 5] является пересечением промежутков [-1; 5] и [3; 7]. это можно записать так: [-1; 5]∩[3; 7]=[3; 5].промежутки [0; 4] и [6; 10] не имеют общих элементов. если множество не имеет общих элементов, то говорят, что их пересечение пусто. значит, пересечение промежутков [0; 4]∩[6; 10]=0. объединение числовых промежутков каждое число из промежутка [1; 7] принадлежит хотя бы одному из промежутков [1; 5] и [3; 7], то есть, либо промежутку [1; 5], либо промежутку [3; 7], либо им обоим. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают . промежуток [1; 7] является объединением промежутков [1; 5] и [3; 7]. это можно записать так: заметим, что объединение промежутков не всегда представляет собой промежуток, например множество не является промежутком. 1. числовым промежутком называется множество всех чисел, удовлетворяющих неравенству.2. знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка.3. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. 4. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают .
Тема (С+Б) 40 руб.; Даня (С+П) 45 руб.; Егор (Б+П) 55 руб; Алиса ( С+Б+П) ---? руб. Решение. 40 + 45 = 85 руб. заплатили вместе Даня и Тема, купив 2 сока,булочку и пирожное (2С+Б+П); 85 - 55 = 30 руб разница в деньгах, уплаченных Егором и совместно Темой и Даней, а в покупках это будет разница в 2 сока [( 2С+Б+П )-(С+П)=2С]; 30 : 2 = 15 руб. стоимость сока 15 + 55 = 70 руб. стоимость покупки Алисы(С+Б+П): сок(С) и данная в условии стоимость покупки Егора (Б+П) ответ: 70 рублей должна заплатить Алиса. Проверка: зная цену сока, из покупки Темы можно найти цену булочки 40-15= 25, а из покупки Дани цену пирожного 45-15=30; тогда покупка Егора (булочка и пирожное) 30+25=55, что соответствует условию.
Даня (С+П) 45 руб.;
Егор (Б+П) 55 руб;
Алиса ( С+Б+П) ---? руб.
Решение.
40 + 45 = 85 руб. заплатили вместе Даня и Тема, купив 2 сока,булочку и пирожное (2С+Б+П);
85 - 55 = 30 руб разница в деньгах, уплаченных Егором и совместно Темой и Даней, а в покупках это будет разница в 2 сока [( 2С+Б+П )-(С+П)=2С];
30 : 2 = 15 руб. стоимость сока
15 + 55 = 70 руб. стоимость покупки Алисы(С+Б+П): сок(С) и данная в условии стоимость покупки Егора (Б+П)
ответ: 70 рублей должна заплатить Алиса.
Проверка: зная цену сока, из покупки Темы можно найти цену булочки 40-15= 25, а из покупки Дани цену пирожного 45-15=30; тогда покупка Егора (булочка и пирожное) 30+25=55, что соответствует условию.