ответ: ≈ 38 м
Пошаговое объяснение:
Найдём сколько метров пройдёт колесо за 1 оборот:
Возьмём формулу длины окружности С=2πr, где
С - длина окружности
r - радиус окружности
π ≈ 3,14
С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
Найдём, сколько метров пройдёт колесо за 12 оборотов:
3,14 * 12 ≈ 37,68 м - пройдёт колесо за 12 оборотов
Округлим расстояние до целых:
37,68 м ≈ 38 м
1) С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
2) 3,14 * 12 = 37,68 м - пройдёт колесо за 12 оборотов
3) 37,68 м ≈ 38 м
Монета брошена шесть раз.
В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.
Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.
Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,
второй раз - Орел, третий раз - Решка и т.д..
Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,
то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).
Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).
Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".
Подсчитаем количество исходов, при которых в цепочке
Орел будет встречаться 0, 1 или 2 раза.
- 1 исход (Орел не выпал ни разу)
Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов
С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (
Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)
64 - (1+6+15) = 42.
Р = 42/64 = 0,65625
ответ: ≈ 38 м
Пошаговое объяснение:
Найдём сколько метров пройдёт колесо за 1 оборот:
Возьмём формулу длины окружности С=2πr, где
С - длина окружности
r - радиус окружности
π ≈ 3,14
С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
Найдём, сколько метров пройдёт колесо за 12 оборотов:
3,14 * 12 ≈ 37,68 м - пройдёт колесо за 12 оборотов
Округлим расстояние до целых:
37,68 м ≈ 38 м
1) С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
2) 3,14 * 12 = 37,68 м - пройдёт колесо за 12 оборотов
3) 37,68 м ≈ 38 м
Пошаговое объяснение:
Монета брошена шесть раз.
В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.
Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.
Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,
второй раз - Орел, третий раз - Решка и т.д..
Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,
то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).
Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).
Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".
Подсчитаем количество исходов, при которых в цепочке
Орел будет встречаться 0, 1 или 2 раза.
- 1 исход (Орел не выпал ни разу)
Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов
С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (
Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)
64 - (1+6+15) = 42.
Р = 42/64 = 0,65625