В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
никита20029
никита20029
07.02.2023 02:39 •  Математика

3. Найдите корень уравнения (подсчеты выполнить в столбик):
а) 4,402 х = 0,71
б) 5,2= 63.1
в) (4.26 – x) * 2.1 = 6,258​

Показать ответ
Ответ:
Екатерина270604
Екатерина270604
19.09.2021 12:25

Найти координаты точки Q, симметричной точке P(3; -4; 6) относительно плоскости, проходящей через точки M1(-6; 1; -5), M2(7; -2; -1), M3(10;-7;1).

Для составления уравнения плоскости используем формулу:

x - xA               y - yA                 z - zA

xB - xA           yB - yA               zB - zA

xC - xA          yC - yA               zC - zA = 0

Подставим данные и упростим выражение:

x - (-6)         y – 1            z - (-5)

7 - (-6)       (-2) – 1        (-1) - (-5)

10 - (-6)     (-7) – 1          1 - (-5) = 0

x - (-6)         y – 1             z - (-5)

 13                -3                   4

 16                -8                   6 = 0

(x - (-6))(-3·6-4·(-8) – (y – 1)(13·6-4·16) + (z - (-5))(13·(-8)-(-3)·16) = 0

14(x - (-6)) + (-14)(y – 1) + (-56)(z - (-5)) = 0

14x - 14y - 56z - 182 = 0

x - y - 4z - 13 = 0.

Нормальный вектор этой плоскости равен (1; -1; -4) и является направляющим вектором перпендикуляра к плоскости.

Получаем уравнение перпендикуляра из точки Р(3; -4; 6).

((x – 3)/1) = (y + 4)/(-1) = ((z – 6)/(-4).

Координаты, которые имеет точка пересечения  x,y,z, должны удовлетворять уравнению прямой и уравнению плоскости. Поэтому, для их определения, необходимо решить систему уравнений, которая включает уравнение прямой и уравнение плоскости. Это система:

{((x – 3)/1) = (y + 4)/(-1) = ((z – 6)/(-4).

{x - y - 4z - 13 = 0.

Из уравнения прямой получаем зависимость переменных.

-x + 3 = y + 4, отсюда y = -x – 1.

-4x + 12 = z – 6, отсюда z = -4x + 18.

Подставим их в уравнение плоскости.

x – (-x – 1) – 4(-4x + 18) - 13 = 0,

x + x + 1 + 16x – 72 – 13 = 0,

18x = 84,

x = 84/18 = 14/3,

y = (-14/3) – 1 = -17/3,

z = -4*(14/3) + 18 = -2/3.

Найдена точка E пересечения перпендикуляра из точки Р к плоскости.

Теперь можно определить точку Q, симметричную точке Р относительно  точки Е в заданной плоскости по формуле симметрии.

x(Q) = 2*x(E) – x(P) = 2*(14/3) – 3 = 19/3.

y(Q) = 2*y(E) – y(P) = 2*(-17/3) – (-4) = -22/3.

z(Q) = 2*z(E) – z(P) = 2*(-2/3) – 6 = -22/3.

ответ: точка Q((19/3); (-22/3); (-22/3)).

0,0(0 оценок)
Ответ:
superM228228
superM228228
05.05.2023 05:48

30 см

Пошаговое объяснение:

Дано: Окр. О, ОЕ;

АВ - касательная;

ЕН = 16 см; ОЕ = 23 см.

Найти: СК

Проведем АМ - радиус в точку касания.

1. Рассмотрим СКНЕ

Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.

⇒ ЕН ⊥ АВ, СК ⊥ АВ.

Если две прямые перпендикулярны третьей, то они параллельны между собой.

⇒ НЕ || СК

Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

⇒ СКНЕ - прямоугольная трапеция.

2. ОЕ = ОС = R;

Радиус, проведенный в точку касания, перпендикулярен касательной.

⇒ ОМ ⊥ АВ

⇒ АВ || НЕ || СК

Если отрезок в трапеции проходит через середину одной из его боковых сторон, пересекает вторую и параллелен основаниям — этот отрезок можно назвать средней линией этого трапеции.

⇒ ОМ - средняя линия трапеции СКНЕ.

ОМ = ОЕ = ОС = 23 см (радиусы)

Средняя линия трапеции равна полусумме оснований.

\displaystyle OM=\frac{HE+CK}{2}\\\\23 = \frac{16+CK}{2}\\\\16+CK = 46\\\\CK= 30

CK = 30 см


К окружности проведена касательная так, что один из концов диаметра удалён от нее на 16 см . Найдите
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота