ответ:Одно из свойств биссектрисы угла треугольника - она делит противолежащую углу сторону на отрезки, пропорциональные прилегающим сторонам. Пусть высота, проведенная из вершины В, пересекает АС в точке К. Биссектриса угла А пересекает ВК в точке М. Треугольник АВК прямоугольный, угол К в нем прямой. ВК:КМ=5:3 (по условию). Тогда АВ:АК=5:3 (св-во биссектрисы). cosA=AК/АВ=3/5=0,6. sinA=\|(1-0,6^2)=0,8. По теореме синусов ВС/sinA=2R, где R -радиус описанной окружности. R=BC/(2sinA)=8/(2*0,8)=5(см). ответ: 5см.
ответ:Одно из свойств биссектрисы угла треугольника - она делит противолежащую углу сторону на отрезки, пропорциональные прилегающим сторонам. Пусть высота, проведенная из вершины В, пересекает АС в точке К. Биссектриса угла А пересекает ВК в точке М. Треугольник АВК прямоугольный, угол К в нем прямой. ВК:КМ=5:3 (по условию). Тогда АВ:АК=5:3 (св-во биссектрисы). cosA=AК/АВ=3/5=0,6. sinA=\|(1-0,6^2)=0,8. По теореме синусов ВС/sinA=2R, где R -радиус описанной окружности. R=BC/(2sinA)=8/(2*0,8)=5(см). ответ: 5см.
Пошаговое объяснение:
31
Пошаговое объяснение:
Пусть всего было х деревьев. Тогда
1) х = 5n₁ + а, где n₁ - число рядов, в которых было по 5 деревьев и а - остаток, т.е. число деревьев в неполном ряду.
При делении числа на 5 всегда а < 5, т.е.
а может принимать значения а = 1, 2 , 3 ,4.
2) При посадке по 8 деревьев в ряд:
х = 8n₂ + b
При делении на 8 остаток b < 8, и значит, b может принимать значения:
b = 1, 2 ,3,4,5,6,7
3) По условию b - а = 6, это возможно (при заданных а и b) только, если:
b = 7, а = 1
Следовательно, в 1-ом случае остаток а = 1, во втором b = 7.
4) Общее число деревьев, по условию, < 50.
Найдём числа < 50, которые при делении на 8 дают остаток 7:
8 * 1 + 7 = 15
8 * 2 + 7 = 25
8 * 3 +7 = 31
8 * 4 + 7 = 39
8 * 5 + 7 = 47
Из этих чисел делится на 5 с остатком 1 только число 31. (31 = 5 * 6 +1)
Следовательно, всего было 31 саженец.