5. Сделай чертеж и реши задачу.
От двух смотровых площадок на космодроме отъехали од
новременно навстречу друг другу легковая машина и микро-
автобус с туристами и встретились через 3 часа. Скорость
микроавтобуса - 15 км/ч, скорость машины - в 4 раза боль-
ше. Найди расстояние между смотровыми площадками.
у- 60%го р-ра; 0,6у -кислоты внём
х+у+5 полученного 20%го р-ра; 0,2(х+у+5)=0,2х+0,2у+1 кислоты в нём
составим 1е уравнение: 0,4х+0,6у=0,2х+0,2у+1
преобразуем его: 0,2х+0,4у=1; или 2х+4у=10; или х+2у=5
0,8*5=4 кг кислоты в 5кг 80%го р-ра
х+у+5 полученного 80%го р-ра; 0,7(х+у+5)=0,7х+0,7у+3,5 кислоты в нём
составим 2е уравнение: 0,7х+0,7у+3,5=0,4х+0,6у+4
преобразуем его: 0,3х+0,1у=0,5 ; или 3х+у=5
получаем систему:
{х+2у=5
{3х+у=5
отсюда у=5-3х
подставим х+2(5-3х)=5
решаем х+10-6х=5
5=5х
х=1 кг 40%го р-ра
у=5-3*1=2 кг 60%го р-ра
Разберем два вида решения систем уравнения:
1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.
Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.
Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение. Находим решение системы.
Решением системы являются точки пересечения графиков функции.
Рассмотрим подробно на примерах решение систем.