6. найти частное решение дифференциального уравнения. ток изменяется по закону: i= 20t^3 - 10t^2 + 5 (кл) найти заряд пройденный через сопротивление через t= 1 с, если в начальный момент времени (t= 0) ток равнялся нулю (i = 0). причем i =dq/dt
Воспользуемся методом, позволяющим находить в разложении многочлена на скобки выражения вида Если a>0, это сразу дает два решения если a<0, действительные корни эта скобка не дает, но по любому степень многочлена будет понижена на 2. Кстати, решения вида я называю парными; название мне кажется оправданным. Легко доказать, что многочлен P(x) имеет парные корни тогда и только тогда, когда они обращают в ноль по отдельности сумму четных степеней и сумму нечетных степеней. Это следует из того, что сумма четных степеней равна а сумма нечетных равна
Кстати, это утверждение будет работать и для нулевого корня, если считать, что ноль является парным корнем, в том случае, когда он является кратным.
1) Разбиваем на четные и нечетные степени:
найденные t удовлетворяют и первому уравнению, поэтому оно принимает вид (t-2)(t+1)(t+3)=0, а поскольку исходное уравнение может быть получено в виде суммы этих двух, получаем
1. Рекуррентное соотношение an = an – 1 + 2 вместе с условием a1 = 1 задает арифметическую прогрессию с первым членом 1 и разностью 2: 1, 3, 5, 7, … . Это последовательность нечетных чисел. 2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени. Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации. 3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
Воспользуемся методом, позволяющим находить в разложении многочлена на скобки выражения вида Если a>0, это сразу дает два решения если a<0, действительные корни эта скобка не дает, но по любому степень многочлена будет понижена на 2. Кстати, решения вида я называю парными; название мне кажется оправданным. Легко доказать, что многочлен P(x) имеет парные корни тогда и только тогда, когда они обращают в ноль по отдельности сумму четных степеней и сумму нечетных степеней. Это следует из того, что сумма четных степеней равна а сумма нечетных равна
Кстати, это утверждение будет работать и для нулевого корня, если считать, что ноль является парным корнем, в том случае, когда он является кратным.
1) Разбиваем на четные и нечетные степени:
найденные t удовлетворяют и первому уравнению, поэтому оно принимает вид (t-2)(t+1)(t+3)=0, а поскольку исходное уравнение может быть получено в виде суммы этих двух, получаем
(t-2)(t+1)(t+3)-2x(t-2)(t+1)=0; (t-2)(t+1)(t-2x+3)=0; (x²-2)(x²+1)(x²-2x+3)=0.
ответ:
2) t³+6t²+11t+6=0; -2x(t^2+3t+2)=-2x(t+1)(t+2)=0;
t³+6t²+11t+6=(t+1)(t+2)(t+3); все уравнение принимает вид
(t+1)(t+2)(t+3)-2x(t+1)(t+2)=(t+1)(t+2)(t-2x+3)=(x²+1)(x²+2)(x²-2x+3)=0.
ответ: решений нет.
2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени.
Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации.
3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .