6. Пусть Р1 - множество букв, использованных при написании слова АНАРА, И Р2 – слова АЗАТ. Найдите: а) P1; c) P1 P2; e) P1\P2; Б) P2; d) P1P2; f) P2\P1.
Промежутки возрастания функции соответствуют положительным значениям производной, а промежутки убывания - отрицательным значениям. Найдем производную функции у= 2х³ +4х²-1 и определим ее промежутки знакопостоянства. у' = 6x²+8x = 2х*(3х+4). Находим корни трехчлена: х = 0, х = -4/3. Т.к. коэффициент 6 - положительный, то ветви параболы у = 6х² +8х направлены вверх и знаки будут + - +. -4/3 0 + - + возрастает убывает возрастает.
Найдите наибольшее и наименьшее значение функции а) f(x)= 3x^5-5x^3 на промежутке [-4;2] б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1]
Находим значение функции на границах интервала f(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752 f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56
Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2] имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752
ответ: fmin=-2756, fmax=56.
б) f(х)= (х+4)/х, на промежутке [-1;1]
f(х)= (х+4)/х =1+4/х
Находим производную функции f(x)= 1+4/х
f'(x)= (1+4/х)' = -4/x^2
Данная производная не имеет нулевых значение и терпит разрыв в точке х=0. Функция f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода.
Находим поведение этой функции при приближении к точке 0 справа и слева.
Значение функции на границах интервала равны f(-1) = 1 + 4/(-1) = -3 f(1) = 1+4\1 = 5 Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.
у' = 6x²+8x = 2х*(3х+4). Находим корни трехчлена: х = 0, х = -4/3. Т.к. коэффициент 6 - положительный, то ветви параболы у = 6х² +8х направлены вверх и знаки будут + - +.
-4/3 0
+ - +
возрастает убывает возрастает.
ответ: (-∞; -4/3] - возрастает, [-4/3;0] - убывает, [0;+∞) - возрастает.
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]
б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1]
Решение:
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]
Находим производную функции f(x)= 3x^5-5x^3
f'(x)= 5*3x^(5-1)-3*5x^(3-1) = 15x^4-15x^2 = 15x^2(x^2-1)= 15x^2(x-1)(x+1)
Находим критические точки решив уравнение f'(x) = 0
15x^2(x-1)(x+1) = 0
х = 0; х = 1; х = -1.
Находим значение функции в этих точках
f(-1)= 3(-1)^5-5(-1)^3 =-3 + 5= 2
f(0)= 3*0^5-5*0^3 = 0
f(1)= 3(1)^5-5(1)^3 = 3 - 5= -2
Находим значение функции на границах интервала
f(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752
f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56
Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2]
имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752
ответ: fmin=-2756, fmax=56.
б) f(х)= (х+4)/х, на промежутке [-1;1]
f(х)= (х+4)/х =1+4/х
Находим производную функции f(x)= 1+4/х
f'(x)= (1+4/х)' = -4/x^2
Данная производная не имеет нулевых значение и терпит разрыв в точке х=0.
Функция f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода.
Находим поведение этой функции при приближении к точке 0 справа и слева.
Значение функции на границах интервала равны
f(-1) = 1 + 4/(-1) = -3
f(1) = 1+4\1 = 5
Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.