7 Есепті шығар. 62 Қоқысты өңдейтін престің массасы тоннаға, ал ОНЫҢ ҚО- 100 2 рабының массасы тоннаға тең. Престің қораппен бірге 100 алғандағы массасы қаншаға тең?
Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел. Пример: Найти размах чисел 2, 5, 8, 12, 33. Решение: Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31: 33 – 2 = 31. Мода ряда чисел – это число, которое встречается в данном ряду чаще других. Пример: Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8. Решение: Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел. Медиана. В упорядоченном ряде чисел: Медиана нечетного количества чисел – это число, записанное посередине. Пример: В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине. Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине. Пример: Найти медиану чисел 4, 5, 7, 11, 13, 19. Решение: Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 и является медианой данного ряда чисел. В неупорядоченном ряде чисел: Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда. Пример 1: Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21. Решение: Располагаем числа в порядке возрастания: 1, 3, 5, 17, 19, 21, 25. Посередине оказывается число 17. Оно и является медианой данного ряда чисел. Пример 2: Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану: 5, 1, 3, 25, 19, 17, 21, 19. Решение: Снова выстраиваем упорядоченный ряд: 1, 3, 5, 17, 19, 19, 21, 25. Посередине оказались числа 17 и 19. Находим их среднее значение: (17 + 19) : 2 = 18. Число 18 и является медианой данного ряда чисел.
Это удвоенный объем конуса, у которого высота равна V6 ( 2V6 : 2= V6) V - значок корня ( катет в два раза меньше гипотенузы, лежащей против угла в 30 гр)
Образующая конуса 2V6 - это из условия
Основание конуса - окружнисть с радиусом, который вычисляем по теореме Пифагора R^2 = (2V6)^2 -( V6)^2 R = 3V2
Радиус знаем, значит найдем площадь основания конуса S = pi*R^2
А объем считаем по формуле h/3 * S
Только у нас два таких конуса, значит два объема 2h/3 * S Высоту знаем, площадь посчитаем быстренько... .
Пример: Найти размах чисел 2, 5, 8, 12, 33.
Решение: Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31:
33 – 2 = 31.
Мода ряда чисел – это число, которое встречается в данном ряду чаще других.
Пример: Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.
Решение: Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.
Медиана.
В упорядоченном ряде чисел:
Медиана нечетного количества чисел – это число, записанное посередине.
Пример: В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.
Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине.
Пример: Найти медиану чисел 4, 5, 7, 11, 13, 19.
Решение: Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел:
(7 + 11) : 2 = 9.
Число 9 и является медианой данного ряда чисел.
В неупорядоченном ряде чисел:
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Пример 1: Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.
Решение: Располагаем числа в порядке возрастания:
1, 3, 5, 17, 19, 21, 25.
Посередине оказывается число 17. Оно и является медианой данного ряда чисел.
Пример 2: Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану:
5, 1, 3, 25, 19, 17, 21, 19.
Решение: Снова выстраиваем упорядоченный ряд:
1, 3, 5, 17, 19, 19, 21, 25.
Посередине оказались числа 17 и 19. Находим их среднее значение:
(17 + 19) : 2 = 18.
Число 18 и является медианой данного ряда чисел.
Образующая конуса 2V6 - это из условия
Основание конуса - окружнисть с радиусом, который вычисляем по теореме Пифагора R^2 = (2V6)^2 -( V6)^2 R = 3V2
Радиус знаем, значит найдем площадь основания конуса S = pi*R^2
А объем считаем по формуле h/3 * S
Только у нас два таких конуса, значит два объема 2h/3 * S Высоту знаем, площадь посчитаем быстренько... .
Вот цифры подставьте и посчитайте.