В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
aregv
aregv
10.11.2020 20:09 •  Математика

7
Найдите значение выражения 16.х – 5| -|-х – 5 при х = 3.
1)
ответ:

Показать ответ
Ответ:
elektroo67
elektroo67
11.01.2020 23:39

Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда

\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.

Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,

\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.

Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,

\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.

Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).

Пример 1. Вычислим \int\cos2t\,dt.

Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,

\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.

Замечание. Вычисление короче записывают так:

\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:

1) a-b=-3   - разность отрицательная. значит  a<b

   a=-3+b

    a=b-3

    a < b

2) a - b = 2/7  - разность положительная. значит a>b

    a=2/7+b

    a=b+2/7

     a > b

3) a - b=0  - разность = 0. значит a=b

    a=0+b

    a=b

4)  a - b= -0.5  - разность отрицательная, значит a<b

    a=-0.5+b

    a=b-0.5

    a < b

5)  b-a=1  - разность положительная, значит b>a

    b=1+a

    b=a+1

    b > a

6)  b - a=-0.99 - разность отрицательная. значит b<a

     b=-0.99+a

      b=a-0.99

      b < a

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота