7. т-тетрамино мистер форд решил разрезать квадратную доску на фигурки тетрамино (из 4 клеток) в форме буквы "т": выберите среди предложенных те значения, для которых это возможно сделать.
Оценим a₄: 2a₄ = a₄ + a₄ < a₄ + a₅ = 18 ⇒ a₄ ≤ 8. Опять же, учитывая, что числа натуральны и различны, можем сказать, что a₃ ≤ 7, a₂ ≤ 6.
a₁ + a₂ = 10. Если a₂ ≤ 6, то a₁ ≥ 4. Но по другой оценке a₁ ≤ 4. Значит, a₁ = 4 ⇒ a₂ = 6. Если a₂ = 6, то a₃ ≥ 7, но по другой оценке a₃ ≤ 7. Значит, a₃ = 7. По такой же логике получаем a₄ = 8 и a₅ = 10 (то есть убеждаемся, что такая ситуация вообще возможна).
Пусть каждую задачу оценили в a₁, a₂, a₃, a₄, a₅ , причём a₁ < a₂ < a₃ < a₄ < a₅. По условию a₁ + a₂ = 10, a₄ + a₅ = 18.
Оценим a₁: 2a₁ = a₁ + a₁ < a₁ + a₂ = 10 ⇒ a₁ < 5 ⇒ a₁ ≤ 4.
Оценим a₄: 2a₄ = a₄ + a₄ < a₄ + a₅ = 18 ⇒ a₄ ≤ 8. Опять же, учитывая, что числа натуральны и различны, можем сказать, что a₃ ≤ 7, a₂ ≤ 6.
a₁ + a₂ = 10. Если a₂ ≤ 6, то a₁ ≥ 4. Но по другой оценке a₁ ≤ 4. Значит, a₁ = 4 ⇒ a₂ = 6. Если a₂ = 6, то a₃ ≥ 7, но по другой оценке a₃ ≤ 7. Значит, a₃ = 7. По такой же логике получаем a₄ = 8 и a₅ = 10 (то есть убеждаемся, что такая ситуация вообще возможна).
Зная a₁ + a₂, a₃, a₄ + a₅, найдём сумму: 10 + 7 + 18 = 35.
ответ: 35
пусть пешеход из Б шёл со скоростью х (км/ч),
тогда пешеход из А шёл со скоростью х+1 (км/ч)
на свой путь пешеход из Б затратил 10/х (ч)
пешеход из А затратил на свой путь 9/(х+1)+1/2 (ч).
так как они встретились, значит в пути были одинаковое время
поэтому 9/(х+1)+1/2=10/х
10/х-9/(х+1)=1/2
приведём к общему знаменателю 2х(х+1). Дополнительный множитель у первой дроби 2(х+1), дополнительный множитель у второй дроби 2х, а у третьей х(х+1)
10*2(х+1)-9*2х=1*х(х+1)
20х+20-18х=x^2+x
2x+20=x^2+x
x^2-x-20=0.
по теореме Виета, произведение корней = -20, а сумма корней 1. Это числа 5 и -4.
5*(-4)=-20,5+(-4)=1.
скорость не может быть отрицательным числом, поэтому скорость пешехода из Б=5 (км/ч), тогда скорость пешехода из А =6 км/ч