множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины
Проведем диагональ в квадрате - основании пирамиды.
Высота, половина диагонали и боковое ребро составляют прям-ный тр-ник.
(d/2)^2 = b^2 - H^2 = 220^2 - 150^2 = 48400 - 22500 = 25900
d/2 = √(25900) = 10√259 ~ 161 м.
d = 20√259 ~ 322 м.
Сторона основания а = d/√2 = d√2/2 = 20√259*√2/2 = 10√518 ~ 227,6 м
Площадь основания пирамиды S(осн) = a^2 = 100*518 = 51800 кв.м.
Объем пирамиды V = 1/3*S(осн)*H = 1/3*51800*150 = 2590000 куб.м.
Боковая поверхность - это 4 равнобедренных тр-ника с a = 10√518, b = 220.
Его высота (апофема пирамиды)
h = √(a^2 - (b/2)^2) = √(51800 - 110^2) = √(51800 - 12100) = √(39700) = 10√397
S(бок)=4*S(тр)=4*a*h/2 = 2*10√518*10√397 = 200√(518*397) ~ 90696,42 кв.м.
Извини чертёж сделать не смогу)
множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины