В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География

А Б нүктелерінің координаталарын жазың​

Показать ответ
Ответ:
Xidirova04
Xidirova04
30.01.2022 00:57

Пусть время первого х часов , второго у часов. Тогда производительность первого 1/x, второго 1/y. Вместе они работали 3 целых 3/5 часа = 18/5. Значит, совместная производительность 5/18. Первое уравнение 1/х + 1/у = 5/18

Второй сделал 1/3 работы за  1/3 : 1/у = у/3,  первый сделал оставшуюся часть 2/3 работы зв 2/3 : 1/х =2х/3. Всего они работали 8 часов. Второе уравнение

2х/3  +  у/3 = 8. Получили систему. Из первого уравнения 18x+18y=5xy, из второго

2x+y = 24. Отсюда, у = 24-2х. Подставим в первое, после упрощения получим:

5x^2 -69 +216 = 0,  x=9, тогда у=24-18=6, т.е. время первого 9 часов, второго 6 часов

Или х=4,8  тогда у=14,4, т.е время первого 4,8 часа, второго 14,4 часа  

0,0(0 оценок)
Ответ:
Kseniamaria
Kseniamaria
10.09.2022 13:26

Пусть x - длина дуги, ограничивающей искомый сектор, вырезаемый из круглого листа.

Пусть l - радиус круглого листа и одновременно образующая конуса (воронки). 

Тогда радианная мера дуги \alpha, ограничивающей искомый сектор равна:

        \alpha=\frac{x}{l} ---------(1)

 Нам необходимо найти при каком x объем воронки (правильного конуса)

будет наибольшим. Запишем формулу объема V конуса:

      V=\frac{\pi*R^{2}*h}{3} --------(2)

где R - радиус основания конуса; h - высота конуса 

Поскольку длина окружности основания конуса равна x, то отсюда

             R=\frac{x}{2\pi}--------(3)

Высоту конуса найдем с теоремы Пифагора:

          h=\sqrt{l^{2}-R^{2}}-------(4)

Подставим в (4) вместо R выражение (3):

 

         h=\sqrt{l^{2}-(\frac{x}{2\pi})^{2}}--------(5)

 

Подставим в (2) вместо R и h соотвественно выражения (3) и (5), получим:

      V=A*x^{2}\sqrt{l^{2}-(\frac{x}{2\pi})^{2}}--------(6)

   где A=\frac{1}{12\pi} 

  Очевидно, что естественной областью определения объема как функции от x есть интервал:

        0<x<2\pi*l ------(7)

 Продифференцируем (6) по x:

  V^{'}_{x}=A(2x\sqrt{l^{2}-(\frac{x}{2\pi})^{2}}-\frac{x^{3}}{4{\pi}^{2}\sqrt{l^{2}-(\frac{x}{2\pi})^{2}}}), отсюда

   V^{'}_{x}=\frac{Ax\sqrt{l^{2}-(\frac{x}{2\pi})^{2}}(8{\pi}^{2}l^{2}-3x^{2})}{4{\pi}^{2}(l^{2}-(\frac{x}{2\pi})^{2})} --------(8)

Чтобы функция (6) имела на естественной области ее определения максимум или минимум, необходимо чтобы V^{'}_{x}=0--------(9)

Тогда из (8) и (9) получим:

        8{\pi}^2-3x^{2}=0, отсюда с учетом, что x0, найдем критическую точку:

       x_{o}=\pi*l*\sqrt{\frac{8}{3}}, или

        x_{o}=\frac{2{\pi}l\sqrt{6}}{3} 

  Поскольку естественной области определения (7)  принадлежит только одна критическая точка x_{o}  и поскольку на естественной области определения функция (6) принимает только положительные значения, то критическая точка x_{o} - точка максимума функции (6). Другими словами, при x_{o} объем воронки будет наибольшим.

Теперь мы можем найти радианную меру искомого сектора, для чего подставим в (1) вместо x критическую точку x_{o}:

    \alpha=\frac{x_{o}}{l}=\frac{2{\pi}l\sqrt{6}}{3l}=\frac{2{\pi}\sqrt{6}}{3}

 

 

   

        

 

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота