Алексей, Борис, Вениамин и Григорий подозреваются в ограблении банка. Полиции удалось выяснить следующее: если Алексей невиновен, то Вениамин виновен, а Борис невиновен;
если Григорий виновен, то Борис и Вениамин невиновны;
если Алексей виновен, то Вениамин тоже виновен;
если Вениамин виновен, то кто-то из двух — Борис и Григорий — точно виновен.
Отметьте тех, кто участвовал в ограблении.
Алексей
Борис
Вениамин
Григорий
Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда
\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.
Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,
\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.
Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,
\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.
Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).
Пример 1. Вычислим \int\cos2t\,dt.
Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,
\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.
Замечание. Вычисление короче записывают так:
\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.
Пошаговое объяснение:
2 рабочий: Если у первого-х, а по условию первый рабочий тратит на 4 часа меньше, значит время= х+4. Изготавливает 840 дет. Значит его скорость работы= 840\ х+4.
Разница между первой скоростью и второй составляет 2 детали в час. Составим уравнение:
780\х - 2= 840\(х+4)
780\х - 840\(х+4) - 2=0
780*(х+4)-840х - 2*(х²+4х)=0
780х+3120-840х-2х²-8х=0
-2х²-68х+3120=0
2х²+68х-3120=0
х²+34х-1560=0
D: 34²-4*(-1560)= 1156+6240=7396 √7396=86
1)х= -34-86\2= -120\2=-60 ( Не удовлетворяет условию, так как работа не может быть отрицательной)
2) х= 86-34\2=52\2=26.
Теперь поу словию, нам нужно найти работу 1 рабочего=( 780\х)= 780\26=30.
ответ: 30