В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
slisar4ukbogda
slisar4ukbogda
21.07.2021 17:55 •  Математика

{an} - арифметическая прогрессия. Найти а1, если а20=16 и d=-0,5
1)30,2
2)27,5
3)28
4)24,5
5)25,5 ​

Показать ответ
Ответ:
альбинка28
альбинка28
19.10.2022 01:23

1) AB - от А(х1;y1) до В(x2;y2) - в общем виде линейная функция у=kx+b, где

k=(y2-y1)/(x2-x1), b=x1-0, следовательно подставив значения из условия

k=(4-1)/(6-0)=3/6=1/2=0,5, b=1-0=1, получаем уравнение прямой АВ y=0,5x+1

2) AC - подставляем так же значения точек А и С - k=(y2-y1)/(x2-x1), b=x1-0,

следовательно k=(5-1)/(3-0)=4/3, b=1-0=1, уравнение АС y=(4/3)x+1

3) BC - аналогично подставляем значения точек В и С - k=(5-4)/(3-6)=1/(-3)=(-1/3),

b=6-0=6, следовательно для ВС у=(-1/3)x+6

Точки можно легко проверить,подставив в уравнения прямых, котрым они будут принадлежать - игреки и иксы сойдутся для каждой точки.

0,0(0 оценок)
Ответ:
ainurpandaa
ainurpandaa
09.03.2023 06:27

ответ: а) 1/720;  б) 1/46656

Пошаговое объяснение:

Будем находить вероятность для каждого жетона-буквы. Для удобства их пронумеруем от 1 до 6. Анализируя следующие жетоны, будем считать, что событие с предыдущими жетонами уже произошли.

а) Жетоны не возвращаются обратно.

1 жетон

Всего жетонов в мешке 6 -- это все возможные исходы. Подходит нам только 1 жетон с буквой "М", то есть один благоприятный исход. Найдём вероятность по классическому определению -- частное благоприятных на всевозможные исходы:

P_1=\frac{1}{6}

2 жетон

Всего жетонов в мешке 5, благоприятный один с буквой "О"

P_2=\frac{1}{5}

3 жетон

Всего жетонов в мешке 4, благоприятный один с буквой "С"

P_3=\frac{1}{4}

Далее рассуждения аналогичные:

P_4=\frac{1}{3};\;\;P_5=\frac{1}{2};\;\;P_6=\frac{1}{1}=1

Так как должно выполниться каждое событие (И первая буква "м", И вторая буква "0", И...), то вероятности надо перемножить между собой:

P = P_1 \cdot P_2 \cdot P_3 \cdot P_4 \cdot P_5 \cdot P_6 =\frac{1}{6} \cdot\frac{1}{5} \cdot\frac{1}{4} \cdot\frac{1}{3}\cdot\frac{1}{2}\cdot1=\frac{1}{720}

б) Жетоны возвращаются обратно.

Отличается от пункта а) тем, что количество всех возможных исходов не будет уменьшаться.

1 жетон

Всего жетонов в мешке 6, благоприятный один с буквой "М"

P_1=\frac{1}{6}

2 жетон

Всего жетонов в мешке 6, благоприятный один с буквой "О"

P_2=\frac{1}{6}

Так как в слове "МОСКВА" нет повторяющихся букв, то и остальные вероятности для жетонов 3, 4, 5 и 6 будут также одинаковы.

Так как должно выполниться каждое событие, то вероятности перемножаются:

P = P_1 \cdot P_2 \cdot P_3 \cdot P_4 \cdot P_5 \cdot P_6 =\frac{1}{6} \cdot\frac{1}{6} \cdot\frac{1}{6} \cdot\frac{1}{6} \cdot\frac{1}{6} \cdot\frac{1}{6} =\frac{1}{6^6}=\frac{1}{46656}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота