В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Dimastem
Dimastem
14.01.2021 08:35 •  Математика

Антону и Никите дали по карточке. На каждой карточке было записано одно натуральное число, меньшее 100. Также Антону и Никите известно, что числа на их карточках отличаются на 1, но неизвестно, у кого из мальчиков большее число, а у кого меньшее. Например, им могли достаться числа 1 и 2 или числа 38 и 37. Антон посмотрел на свою карточку и сказал: «Я не знаю, Никита, какое число у тебя, но у меня двузначное число». Никита на это ответил: «Я раньше не знал твоё число, но когда я услышал твои слова, то сразу понял, какое у тебя число!»Какое число было у Никиты на карточке и какое было у Антона

Показать ответ
Ответ:
LittlePanda3
LittlePanda3
18.08.2022 01:48

Пошаговое объяснение:

задача решается при кругов Эйлера

у нас

всего 35

ф =24

в = 18

б =12

ф+в =10

ф+б = 8

в+б =5

будем смотреть на круги и считать

если мы сложим ф+в просто как 24+18 то увидим, что те, кто занимается двумя этими видами одновременно, учтутся 2 раза. поэтому правильное объединение множеств будет ф∪в = 24+18-10

если мы сюда добавим баскетбол просто как 12, то увидим, что дважды  учтутся те, кто занимается ф+б и в+б. поэтому их надо тоже вычесть

т.о. получится такое объединение множеств ф∪в∪б = 24+18-10+12-8-5

но при этом те, кто занимается сразу всеми видами отнялись дважды.

поэтому их надо прибавить еще раз. их у нас Х.

вот, получили формулу

ф∪в∪б = 24+18-10+12-8-5+ Х =35

31+Х=35

Х=4

теперь заполним круги и проверим весь счет

Ф =10+6+4+4=24

в = 7+6+4+1=18

б = 4+4+1+3=12

ф+в 6+4=10

в+б = 4+1=5

ф+б = 4+4 = 8

10+6+7+4+4+1+3=35

круги Эйлера построены верно, задача решена верно - сразу тремя видами спорта занимаются 4 ученика


В классе 35 учеников.24 из них играют в футбол,18-в волейбол,12-в баскетбол. 10 учеников одновременн
0,0(0 оценок)
Ответ:
али5553
али5553
02.05.2020 23:34

родолжаем рассматривать системы линейных уравнений. Этот урок является третьим по теме. Если вы смутно представляете, что такое система линейных уравнений вообще, чувствуете себя чайником, то рекомендую начать с азов на странице Как решить систему линейных уравнений? Далее полезно изучить урок Правило Крамера. Матричный метод.

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, на деньги попадают не только лохи, но еще и гении – портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА. Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и я постараюсь в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.

2) Иметь бесконечно много решений.

3) Не иметь решений (быть несовместной).

Метод  Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья Несовместные системы и системы с общим решением. Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений?

и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы:

. По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка: рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.

После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями.

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули.

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера: ответ:

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота