Арифметическая прогрессия Первое задание.
Первый элемент цепочки в три раза больше третьего элемента, а среднее число 3,6 .Задача найти 1 и 3 элемент цепочки + решение.
Второе задание
Дана цепочка от 1 до 365 надо найти сумму всех чисел,которые кратны числу 7 + решение
Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где
x
2
+(y−1)
2
=4
x
2
+(y−1)
2
=2
2
(0;1)-координаты центра, R=2
A(2;1) \begin{gathered}2^2+(1-1)^2=4\\4+0=4\\4=4\end{gathered}
2
2
+(1−1)
2
=4
4+0=4
4=4
А-принадлежит
B(0;3) \begin{gathered}0^2+(3-1)^2=4\\2^2=4\\4=4\end{gathered}
0
2
+(3−1)
2
=4
2
2
=4
4=4
В-принадлежит
С(5;0) \begin{gathered}5^2+(0-1)^2=4\\25+1=4\\26\neq4\end{gathered}
5
2
+(0−1)
2
=4
25+1=4
26
=4
С - не принадлежит
Вектор АВ={0-2;3-1}
AB={-2;2}
AB={-1;1}
составляем уравнение прямой АВ:
(х-2)/(-1)=(у-1)/1
х-2=-(у-1)
х-2=-у+1
х+у-2-1=0
х+у-3=0 - общий вид уравнения прямой
или, если угодно, канонический вид: у=-х+3