В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
SashaSvey
SashaSvey
09.02.2021 23:16 •  Математика

Автобус мав проїхати 280 км. Проїхавши 3/7 цієї відстані,автобус збільшив свою швідкість на 20 км у годину. Знайдить швідкість автобуса на кожній ділянці руху, якщо на весь шлях було витрачено 4 години

Показать ответ
Ответ:
karavanov1
karavanov1
26.06.2021 18:36

1. Поскольку из условия задачи нам известно, что обще число рабочих составляет 200 человек, следовательно при случайном выборе рабочего может попасться любой, а значит существует 200 разных исходов в данной ситуации.

2. А поскольку из условия задачи также известно, что норму не выполняют 15 из них, следовательно вариантов, удовлетворяющих требуемому условию 15. Вычислим какова вероятность того, что один случайно выбранный рабочий не выполняет норму.

р = 15 / 200 = 0,075.

3. А теперь вычислим вероятность того, что 2 случайно выбранных рабочих не выполняют норму.

р = 0,075 * 0,075 = 0,005625.

0,0(0 оценок)
Ответ:
Janna91
Janna91
08.03.2021 16:59

1) xy''-y'=e^xx^2

Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на x^2, получаем

\dfrac{xy''-y'}{x^2}=e^x

В левой части уравнения это ни что иное как формула производной частного, то есть :

\left(\dfrac{y'}{x}\right)'=e^x

\dfrac{y'}{x}=\displaystyle \int e^xdx=e^x+C_1\\ \\ y'=xe^x+C_1x\\ \\ y=\int \Big(xe^x+C_1x)dx=\int xe^xdx+\int C_1xdx~\boxed{=}

Подсчитаем отдельный интеграл I_1 по частям.

I_1=\displaystyle \int xe^xdx=\left|\left|\begin{array}{ccc}u=x;~~~ du=dx\\ \\ dv=e^xdx;~~ v=e^x\end{array}\right|\right|=uv-\int vdu=xe^x-\int e^xdx=\\ \\ \\ =xe^x-e^x+C_2

\boxed{=}~ xe^x-e^x+C_2+\dfrac{C_1x^2}{2}=e^x(x-1)+\dfrac{C_1x^2}{2}+C_2

2) y''-3y'=0

Это линейное однородное дифференциальное с постоянными коэффициентами. Замена y=e^{kx}, перейдём к характеристическому уравнению: k^2-3k=0, k(k-3)=0 корни которого k_1=0 и k_2=3. Тогда общее решение диф. уравнения: y=C_1+C_2e^{3x} и его первая производная y'=3C_2e^{3x}.

Осталось найти константы C₁ и C₂ , подставляя начальные условия.

\displaystyle \left \{ {{1=C_1+C_2} \atop {6=3C_2}} \right. ;~~\left \{ {{C_1=-1} \atop {C_2=2}} \right.

y=-1+2e^{3x} — частное решение.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота