Найдем наибольший общий делитель для кол-ва фруктов каждого вида.
92=2*2*23;
138=2*3*23;
230=2*5*23.
Пошаговое объяснение:НОК=2*23=46 - то есть максимально бабушка могла закрыть 46 банок, в каждой из которых лежали бы 2 груши, 3 яблока и 5 абрикосов
(возможны ситуации, в которых бабушка закрыла бы всего 2 банки, в каждой из которых оказались бы 46 груш, 69 яблок и 115 абрикосов, или всего 23 банки (в каждой из которых 4 яблока, 6 груш и 10 абрикосов, но первый вариант - с НОК - логичнее. Скорее всего, он и подразумевается)
Пошаговое объяснение:Нельзя. В самом деле, пусть мы k1 раз переливали воду из 1-й бочки во 2-ю первым ковшом и k2 раз переливали тем же ковшом воду из 2-й бочки в 1-ю; окончательно мы при этом перелили из 1 -й бочки во 2-ю (k1−k2)2=k⋅2 литров воды, где целое число k=k1−k2 может быть и неположительным. Аналогично, переливая воду l1 раз из 1-й бочки во 2-ю вторым ковшом и l2 раз тем же ковшом переливая воду из 2-й бочки в 1-ю, мы всего перельем из 1-й бочки во 2-ю (l1−l2)(2−2)=l⋅(2−2) литров воды, где число l - целое; поэтому условие задачи требует выполнения равенства k2+l(2−2)=1, или (l−k)2=2l−1, т. е. 2=2l−1l−k. Но так как число 2 - иррациональное, то последнее равенство может иметь место (при целых k и l), лишь если l−k=0 (т. е. l=k] и 2l−1=0, откуда l=12 , что, однако, невозможно, ибо l - целое число.
Найдем наибольший общий делитель для кол-ва фруктов каждого вида.
92=2*2*23;
138=2*3*23;
230=2*5*23.
Пошаговое объяснение:НОК=2*23=46 - то есть максимально бабушка могла закрыть 46 банок, в каждой из которых лежали бы 2 груши, 3 яблока и 5 абрикосов
(возможны ситуации, в которых бабушка закрыла бы всего 2 банки, в каждой из которых оказались бы 46 груш, 69 яблок и 115 абрикосов, или всего 23 банки (в каждой из которых 4 яблока, 6 груш и 10 абрикосов, но первый вариант - с НОК - логичнее. Скорее всего, он и подразумевается)
Пошаговое объяснение:Нельзя. В самом деле, пусть мы k1 раз переливали воду из 1-й бочки во 2-ю первым ковшом и k2 раз переливали тем же ковшом воду из 2-й бочки в 1-ю; окончательно мы при этом перелили из 1 -й бочки во 2-ю (k1−k2)2=k⋅2 литров воды, где целое число k=k1−k2 может быть и неположительным. Аналогично, переливая воду l1 раз из 1-й бочки во 2-ю вторым ковшом и l2 раз тем же ковшом переливая воду из 2-й бочки в 1-ю, мы всего перельем из 1-й бочки во 2-ю (l1−l2)(2−2)=l⋅(2−2) литров воды, где число l - целое; поэтому условие задачи требует выполнения равенства k2+l(2−2)=1, или (l−k)2=2l−1, т. е. 2=2l−1l−k. Но так как число 2 - иррациональное, то последнее равенство может иметь место (при целых k и l), лишь если l−k=0 (т. е. l=k] и 2l−1=0, откуда l=12 , что, однако, невозможно, ибо l - целое число.