В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География

Айгүл бір стакан шырын , ал назар бір стакан сут сатып алды кімнің сатып алган заты кымбат ? каншага кымбат? есептин сызбасын тауып, есептеп шыгар ​

Показать ответ
Ответ:
yanakuzmina1
yanakuzmina1
22.11.2022 15:51
ответ:функция не является непрерывной, в точках 1 и 2 она терпит разрывы второго родаПошаговое объяснение:Здесь единственные "плохие случаи" - это деление на 0. такое происходит при х = 2 или при х = 1f(x)=\dfrac{e^{\dfrac1{1-x}}}{x-2}1. Рассмотрим точку 1

1. Тут явно разрыв, так как функция не определена

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to1-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1-0}\dfrac1{x-2}\cdot\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\bigg(e^{\dfrac10}\bigg)=-\infty

\displaystyle \lim_{x\to1+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1+0}\dfrac1{x-2}\cdot\lim_{x\to1+0}e^{\dfrac1{1-x}}}=1

То есть функция сначала ушла в -∞ а затем резко появилась в 1

это разрыв второго рода

2. Рассмотрим точку 2

1. Тут опять разрыв, смотрим какой

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to2-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2-0}\dfrac{1}{x-2}\lim_{x\to2-0}e^{\dfrac1{1-x}}=-\infty

\displaystyle \lim_{x\to2+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2+0}\dfrac{1}{x-2}\lim_{x\to2+0}e^{\dfrac1{1-x}}=+\infty

То есть функция сначала уходит в -∞ а потом выходит из +∞

В этой точке тоже разрыв второго рода

0,0(0 оценок)
Ответ:
миру3
миру3
15.01.2021 18:10

C^{10}_{35}*C^{10}_{22}*C^{10}_{12}

или

2\,\,753\,\,294\,\,408\,\,504\,\,640

Пошаговое объяснение:

Давайте сначала введём понятие.

Определение. Назовём числом сочетаний из n по k число выбрать из множества мощностью n элементов множество мощностью k элементов, будем обозначать C^k_n и определим формулой

\displaystyle C^k_n=\frac{n!}{k!(n-k)!}

Если нужно доказательство, пишите

Итак, приступаем к решению.

Сначала раздаем первому игроку.

Для него есть 32 карты, из которых мы выбираем 10. Тогда количество выбрать эти карты есть число сочетаний из 32 по 10.

\displaystyle C^{10}_{32}=\frac{32!}{10!(32-10)!}= \frac{22!*23*24*25*26*27*...*32}{22!*10*9*8*7*6*5*4*3*2} =\\=\frac{23*24*25*26*37*...*35}{10*9*8*7*6*5*4*3*2}=64512240

Но можно было просто оставить C^{10}_{35}

Мы уже дали 10 карт первому, поэтому осталось 32 - 10 = 22 карт.

Тогда количество раздать второму 10 карт из 22 - это \displaystyle C^{10}_{22}=\frac{22!}{10!(22-10)!}=\frac{12!*13*14*15*...*21*22}{12!*10*9*8*7*6*5*4*3*2}=\\=\frac{13*14*15*...*21*22}{10*9*8*7*6*5*4*3*2}=646646

Или опять же можно было бы оставить C^{10}_{22}

Третьему останется всего лишь 22 - 10 = 12 карт. Тогда точно также, число выбрать из 12 карт 10 равно

\displaystyle C^{10}_{12}=\frac{12!}{10!(12-10)!}=\frac{12*11*10!}{10!*2}=66

Ну хоть здесь нормальное число. Но опять же можно было и оставить C^{10}_{12}

И так, для каждого из игроков есть свои варианты выбора, причем выбор другого, напрямую зависит от выбрав первого. Тогда нам необходимо перемножить все эти результаты.

Получим C^{10}_{35}*C^{10}_{22}*C^{10}_{12}

Или если в числах, то это

64512240*646646*66=2753294408504640=2\,\,753\,\,294\,\,408\,\,504\,\,640

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота