Банк предлагает программу коммерческого кредитования юридических лиц от 100 000 долл. на срок 1 год на следующих условиях: в рублях ставка 33% годовых, в иностранной валюте 25% годовых. определите для суммы кредита в 200 000 долл. более выгодный вариант кредитования: в рублях или валюте, если курс доллара составляет 27 рублей?
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
у - курс евро к рублю
Первая бивалютная корзина : 0,55х + 0,45у = 37,95
Вторая бивалютная корзина : 0,45х + 0,55у = 39,05 , решим как систему уравнений . Умноножим первое уравнение на (0,45 / 0,55) = 9/11 . Получим :
{ 0,45х + 9/11 * 0,45у = 9/11 * 37,95
-
{ 0,45х + 0,55у = 39,05
9/11 *0,45у - 0,55у = 9/11 * 37,95 - 39,05
0,37у - 0,55у = 31,05 - 39,05
-0,18у = - 8,0
у = 44,44 руб - курс евро к рублю , подставим значение "у" в первое уравнение : 0,55х + 0,45 * 44,44 = 37,95
0,55х = 37,95 - 0,45* 44,44
0,55х = 37,95 - 20,0
0,55х = 17,95
х = 17,95 / 0,55
х = 32,64 руб - курс доллара к рублю
Курс доллара к курса к евра по отношению к рублю равна = 32,64 / 44,44 = 0,7345