1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.
1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
Тогда его объем равен:
V=piR^2*BB1=4*pi*корень из2
Пошаговое объяснение:
Точка на комплексной плоскости изображает число
- действительная часть числа (Real)
- мнимая часть числа (Imaginary)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.