более простой):
Итак, для начала посчитаем то, сколько всего детей и подростков в городе:
370.000 · 0,15 = 55.500, тогда:
Посчитаем сколько в городе всего взрослых:
370.000 - 55.500 = 314.500, теперь посчитаем сколько процентов жителей не работают:
314.500 · 0,35 = 110.075, и последнее действие - посчитаем кол-во жителей которые работают:
314.500 - 110.075 = 204.425 жителей.
ответ: 204425 жителей.
продвинутый):
Посчитаем то, сколько процетов людей, взрослые, а затем найдем их кол-во:
(1 - 0,15) · 370.000 = 314.500
Теперь, найдем процент и кол-во работающих взрослых людей:
(1 - 0,35) · 314.500 = 204.425
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^
′
=f
(x)+g
(x)
(n⋅f(x))
=n⋅f
(x
n
)
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
(x)=(3x
−x)
=(3x
−(x)
=3⋅
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
−1
(1)=
1
−1=2−1=1
более простой):
Итак, для начала посчитаем то, сколько всего детей и подростков в городе:
370.000 · 0,15 = 55.500, тогда:
Посчитаем сколько в городе всего взрослых:
370.000 - 55.500 = 314.500, теперь посчитаем сколько процентов жителей не работают:
314.500 · 0,35 = 110.075, и последнее действие - посчитаем кол-во жителей которые работают:
314.500 - 110.075 = 204.425 жителей.
ответ: 204425 жителей.
продвинутый):
Посчитаем то, сколько процетов людей, взрослые, а затем найдем их кол-во:
(1 - 0,15) · 370.000 = 314.500
Теперь, найдем процент и кол-во работающих взрослых людей:
(1 - 0,35) · 314.500 = 204.425
ответ: 204425 жителей.
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1