По условию, AD - биссектриса, значит делит угол A треугольника ABC пополам (другими словами, угол CAD равен углу BAD = 60 : 2 = 30 градусов. Рассмотрим треугольник ABD: он прямоугольный, угол B равен 90 градусов, угол A - 30 градусов, значит, угол D равен 180 - (90 + 30) = 60 градусов. Гипотенуза AD = 8 см, катет BD лежит напротив угла в 30 градусов => BD = AD/2 = 8/2 = 4 см. Из прямоугольного треугольника ABC находим угол C. Он будет равен 30 градусам (угол B = 90 градусов, угол A = 60 градусов). Рассмотрим треугольник ADC: угол A равен 30 градусов, угол C тоже равен 30 градусов, значит, треугольник ADC - равнобедренный (AD = DC). Т.к. AD = 8 см, то DC тоже равна 8 см. Получается, BD = 4 см, DC = 8 см => BC = 4 + 8 = 12 см. ответ: 12 см.
Теореема: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.Теорема Пифагора это частный случай теоремы косинусов о которой я поведу речь. Теорема косинусов имеет вид:a2 = b2 + c2 - 2bc*Cos(A)Cos(A) это угол лежаший напротив стороны a (обычное обозначение сторон и углов: напротив стороны "а" лежит угол A, "b" лежит угол B, "c" лежит угол C).Доказательство теоремы не очень сложное, судите сами: Введем систему координат с началом в точке А так, как показано на рисунке. Тогда точка В имеет координаты (с;0), а точка С - (b cos A; b sin A). По формуле расстояния между двумя точками получаемВС2 = а2 = (b cos(A) - c)2 + b2Sin2(A) == b2Cos2(A) + b2Sin2(A) - 2*bcCos(A) + c2 == b2 + c2 - 2*bcCos(A)