1. При вычисления второй стороны прямоугольника видим, что в сечении получается удвоенный "египетский" треугольник с катетами 6 и 8 и гипотенузой 10 см. Радиус цилиндра R=8., высота = 6 см. Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³ ОТВЕТ: 384π см³ 2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м Угол между сторонами α= 60 град. Используем формулу S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м² Высота призмы H = S/a = √3/2 м² Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³ ОТВЕТ: 1 1/2 м³
Радиус цилиндра R=8., высота = 6 см.
Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³
ОТВЕТ: 384π см³
2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м
Угол между сторонами α= 60 град.
Используем формулу
S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м²
Высота призмы H = S/a = √3/2 м²
Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³
ОТВЕТ: 1 1/2 м³
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.