В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Geirat
Geirat
06.09.2020 09:55 •  Математика

Дано: abca1b1c1_прямая призма, периметр сечения призмы пл. ckbравер 32. найти : sбок.

Показать ответ
Ответ:
MCЯнуля
MCЯнуля
03.07.2022 18:57

Пошаговое объяснение:

1) Пусть задуманное число х , тогда

(18*х)-73= 89

18х= 89+73

18х= 162

х= 162 : 18

х= 9- задуманное число

2) 2( b+5)+3 = 2b+10+3= 2b+13  при b=4

2*4+13= 12+13= 25

ответ : 25

3) 28 = 2*2*7

делителями числа будут его множители , их произведение , само число и 1

Делителями 28 будут числа : 1; 2; 4; 7; 14; 28

4) Разложением чисел 72 и 120 на простые множители являются простые множители этих чисел :

72 = 2*2*2*3*3

120 = 2*2*2*3*5

5)  НОД ( 72 ; 120 ) = 2*2*2*3= 24

НОК ( 72 ; 120) = 2*2*2*3*3*5= 360

0,0(0 оценок)
Ответ:
MackTraher
MackTraher
16.05.2021 01:28

n<arccos(R₁/R₂)/180

Пошаговое объяснение:

вероятность и геомтрия.

Посмотрим на рисунок. Назовем событие благоприятным, если точки А и В попадают (одновременно) в сегмент большой окружности AR₂B. Причем  нарисованный вариант - имеет максимальную длину дуги (при данных величинах радиусов R₁ R₂), опирающуюся на хорду lABl, еще не пересекающую малую окружность ( lABl только касается меньшей окружности в т R₁).

Вопрос: в каких единицах будем измерять благоприятные (да и все возможные случаи)? В количестве точек - не реально. Точек, что на вышеуказанной дуге, что на всей окружности бесконечно много. Раз в количестве тчек не получается, то будем сравнивать длины дуг!

Итак вероятность n непересечения будет равне:

n=l₀₁/l₀₀, где

l₀₁ - длина дуги AR₁B (количество благоприятных случаев)

l₀₀ - длина большой окружности (количество всех возможных случаев)

С l₀₀ все просто:

l₀₀=2πR₂

Вычислим длину "благоприятной" дуги l₀₁ .

Дуга AR₂B опирается на центральный угол AOB. Найдем этот угол.

Рассмотрим Δ OAR₁. Этот треугольник прямоугольный (прямой угол ∠R₁, т.к. lABl -касательная к малой окружности в т.R₁).

Катет lOR₁l=R₁ (радиусу малой окружности), гипотенуза lOAl=R₂ - радису большой окружности.

lOR₁l/ lOAl=R₁/R₂=cos(∠AOR₁).

∠AOR₁=arccos(R₁/R₂) ⇒ ∠AOB=2*arccos(R₁/R₂).

Длина дуги AR₂B:

l₀₁=2*arccos(R₁/R₂)*2πR₂/360=arccos(R₁/R₂)*2πR₂/180 (запишем так для наглядности);

n=l₀₁/l₀₀,  ⇒  n = (arccos(R₁/R₂)*(2πR₂)/(180) : 2πR₂) =arccos(R₁/R₂)/180;

n=arccos(R₁/R₂)/180.    (1)

Замечание:

На рисунке есть еще одна окружность с радиусом R₃>R₂>R₁. Исходя из этого рисунка наблюдаем динамику роста "благоприятного" сектора при увеличении радиуса бОльшей окружности.

Проверка:

Подставим в полученную формулу отношение R₁/R₂=0,01 (R₂>>R1).

Посчитаем вероятность:

n=arccos(0,01)/180≈0,497.

Т.е. при росте "большой" окружности растет и длина "благоприятного" сектора, и в пределе этот сектор становится равным 1/2 длины окружности (вероятность становится равной 0.5 или 50%).

Справедливости ради формулу (1) надо записать вот так:

n<arccos(R₁/R₂)/180,

т.к. знак "=" - это предельный случай, точка касания, а не пересечения.


Даны две концентрические окружности радиусов r2>r1 с общим центром. На большей окружности наудачу
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота