Даны вершины треугольника авс. найти:
а) уравнение стороны ab;
б) уравнение высоты ch;
в) уравнение медианы am;
г) точку n пересечения медианы am и высоты ch;
д) уравнение прямой, проходящей через вершину с параллельно стороне ab;
е) расстояние от точки с до прямой ab.
a(8; 2) , b(5; -6) , c(7; 4)
ответ: y=4/cos(x).
Пошаговое объяснение:
Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.
Пример 3 7/9=(3*9+7)/9=34/9
Поскольку это деление простых дробей, то "переворачиваем" делитель и далее умножаем числитель на числитель, а знаменатель на знаменатель
34/9:1/9=34/9*9=34
2) У правильной дроби числитель всегда меньше знаменателя.
Составляем неравенство 2х-5<11
2x<16
x<8
3) Число делится на 5, если в разряде единиц у него 5 или 0.
Изданного набора наибольшим будет 9725.
Число делится на 2, если оно четное, т.е в разряде единиц стоит четное число. Это 2 Наименьшим будет 5792