Обозначим сумму возрастов 11-ти основных игроков за x, сумму возрастов всех 16-ти игроков за y+56, сумму возрастов пяти запасных игроков за z.
а) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 = дробь, числитель — x, знаменатель — 11 . Перепишем его по-другому: 11(y плюс 56)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y+56 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k плюс 4. Получается, что x=11k плюс 44, y=16k плюс 8. Пусть k=21, тогда x=275, y=344. Тогда игроки основного состава могут иметь такой возраст: 20,21,22,23,24,25,26,27,28,29,30 лет. Запасные тогда могут иметь возраст: 16,17,18,34,40 лет. Средний возраст и основного состава и всей команды равен 25 лет. б) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 =5. Перепишем его по-другому: 11(y минус 24)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y-24 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k минус 1. Получается, что x=11k минус 11, y=16k плюс 8. Пусть k=22, тогда x=231, y=360. Тогда игроки основного состава могут иметь такой возраст: 16,17,18,19,20,21,22,23,24,25,26 лет. Запасные тогда могут иметь возраст: 31,37,38,39,40 лет. Средний возраст основного состава равен 21 году, средний возраст всей команды равен 26 лет. в) Запишем разность между средним возрастом всей команды и средним возрастом ее основного состава в виде: дробь, числитель — x плюс z, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 = дробь, числитель — 11z минус 5x, знаменатель — 11 умножить на 16 . Она будет наибольшей, если z максимально возможное, а x минимально возможное. Пусть запасные имеют возраст 36,37,38,39,40 лет, а возраст основного состава таков: 16,17,18,19,20,21,22,23,24,25,26. Тогда z=38 умножить на 5=190, x=21 умножить на 11=231. Искомая разность тогда равна 5,3125.
Обозначим сумму возрастов 11-ти основных игроков за x, сумму возрастов всех 16-ти игроков за y+56, сумму возрастов пяти запасных игроков за z.
а) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 = дробь, числитель — x, знаменатель — 11 . Перепишем его по-другому: 11(y плюс 56)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y+56 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k плюс 4. Получается, что x=11k плюс 44, y=16k плюс 8. Пусть k=21, тогда x=275, y=344. Тогда игроки основного состава могут иметь такой возраст: 20,21,22,23,24,25,26,27,28,29,30 лет. Запасные тогда могут иметь возраст: 16,17,18,34,40 лет. Средний возраст и основного состава и всей команды равен 25 лет. б) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 =5. Перепишем его по-другому: 11(y минус 24)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y-24 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k минус 1. Получается, что x=11k минус 11, y=16k плюс 8. Пусть k=22, тогда x=231, y=360. Тогда игроки основного состава могут иметь такой возраст: 16,17,18,19,20,21,22,23,24,25,26 лет. Запасные тогда могут иметь возраст: 31,37,38,39,40 лет. Средний возраст основного состава равен 21 году, средний возраст всей команды равен 26 лет. в) Запишем разность между средним возрастом всей команды и средним возрастом ее основного состава в виде: дробь, числитель — x плюс z, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 = дробь, числитель — 11z минус 5x, знаменатель — 11 умножить на 16 . Она будет наибольшей, если z максимально возможное, а x минимально возможное. Пусть запасные имеют возраст 36,37,38,39,40 лет, а возраст основного состава таков: 16,17,18,19,20,21,22,23,24,25,26. Тогда z=38 умножить на 5=190, x=21 умножить на 11=231. Искомая разность тогда равна 5,3125.
ответ: а) да; б) да; в) 5,3125.
1 см = 10 мм
1 мм = 0,1 см
1) 12 см 2 мм + 7 мм = (12*10 + 2) + 7 = (120 + 2) + 7 = 122 + 7 = 129 мм
129 мм = 129:10 = 12,9 см
ответ: 12,9 см
2) 87 см 6 мм + 25 см 4 мм = (87*10 + 6) + (25*10 + 4) = (870 + 6) + (250 + 4) = 876 + 254 = 1130 мм
1130 мм = 1130:10 = 113 см
ответ: 113 см
3) 50 см 4 мм - 49 см = (50*10 + 4) - 49*10 = (500 + 4) - 490 = 504 - 490 = 14 мм
14 мм = 14:10 = 1,4 см
ответ: 1,4 см
4) 80 см - 39 см 5 мм = 80*10 - (39*10 + 5) = 800 - (390 + 5) = 800 - 395 = 405 мм
405 мм = 405:10 = 40,5 см
ответ: 40,5 см