Длина прямоугольника есть сумма чисел четыре и удвоенного ширинины этого прямоугольника (a) составте выражение о условию (b) составте таблицу для данной зависимости и постройте ее график
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.
В решении.
Пошаговое объяснение:
Найти область определения функции:
1) f(x) = (х² - 5)/(х² - 6х - 16);
Функция в дробном выражении. Знаменатель дроби не может быть равен нулю, иначе дробь не имеет смысла.
Поэтому приравнять знаменатель к нулю, решить квадратное уравнение и вычислить недопустимые значения х:
х² - 6х - 16 = 0
D=b²-4ac = 36 + 64 = 100 √D=10
х₁=(-b-√D)/2a
х₁=(6-10)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(6+10)/2
х₂=16/2
х₂= 8;
ОДЗ: х ≠ -2; х ≠ 8.
Область определения данной функции - множество всех действительных чисел, кроме х= -2 и х=8.
Запись: D(у) = х∈R : х ≠ -2; х ≠ 8.
2) f(x) = √(х + 4) + 8/(х² - 9);
а) Подкоренное значение может быть больше либо равно нулю.
Неравенство:
х + 4 >= 0
x >= -4;
б) Знаменатель дроби не может быть равен нулю, иначе дробь не имеет смысла.
Поэтому приравнять знаменатель к нулю, решить квадратное уравнение и вычислить недопустимые значения х:
х² - 9 = 0
х² = 9
х = ±√9
х = ±3;
ОДЗ: х ≠ -3; х ≠ 3.
Область определения данной функции- множество всех действительных чисел, при х больше либо равно -4, кроме х= -3 и х=3.
Запись: D(у) = х∈R : -4 <=x<-3; -3<x<3;x>3;
Или: D(у) = х∈[-4; -3)∪(-3; 3)∪(3; +∞).
Пошаговое объяснение:
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) > 0 - доказать
Приведём дроби к общему знаменателю 25-b⁴, т.к.
25-b⁴ = (5+ b²) (5-b²)
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) =
= 10/ (25-b⁴) + 1(5-b²)/ (5+ b²)(5-b²) - 1(5+ b²)/ (5-b²)(5+ b²) =
= 10/ (25-b⁴) + (5-b²)/ (25-b⁴) - (5+ b²)/ (25-b⁴) =
= (10 + (5-b²) - (5+ b²))/ (25-b⁴) = (10 + 5-b² - 5- b²)/ (25-b⁴) =
= (10 -2b² ) / (25-b⁴) = 2(5-b²)/ (5-b²)(5+ b²) = 2/(5+ b²)
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.