В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
artyommakarov1
artyommakarov1
25.06.2020 22:10 •  Математика

Докажите, что не существует рациональцых чисел x,y,z, удовлетворяющих системе уравнений x+y+z=10 = 100


x^{2} + y^{2} + z^{2}

Показать ответ
Ответ:
slavaapakinp00lrn
slavaapakinp00lrn
02.12.2021 06:10

Решение, при целых значениях x и y, числа х+3 и х+4 будут двумя целыми последовательными числами, а значит одно из них будет четным, т.е. будет делиться нацело на 2, а значит и произведение (х+3)(х+4) будет делиться нацело на 2.

 

8y - четное для любого целого значения y (как произведение чисел одно из которых (а исенно 8) четное)

8y+5 - нечетное число (как сумма четного числа 8y и нечетного числа 5)

 

при целых значениях переменных x и y левая часть уравнения четное число, а правая  нечетное.

Следовательно данное уравнение не имеет решения в целых числах. Доказано

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота