Два перекладачі перекладають книгу за 18 днів. Скільки часу Знадоби б іншому перекладач на переклад, если ВІН может Перекласти книгу на 15 днів швидше, чем перший?
А) пусть AK : KB = 1 : n AK = x, BL = y, тк AB = CD и BC = AD имеем: cm = ak = x kb = md = nx nd = bl = y lc = an = ny ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm) => kn = lm аналогично получаем kl = nm Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм пусть km ∩ ln = O Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать б) пусть ak = cm = 2x kb = md = 5x bl = nd = 2y an = lc = 5y заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA Sabcd = 7x * 7y * sinA = 49xysinA Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49 ответ: а) доказано; б) 29 / 49.
Сначала, не обращая внимание на "быков" и "коров", выпишем кол-во цифр из загаданного числа, которые присутствуют в ходах: 9486 - 2, 1279 - 3, 8512 - 2, 9761 - 2. Взяв за число для проверки 1279, где только одной цифры нет в задуманном числе, вычисляем, что тремя из четырёх цифр задуманного числа являются 1, 2 и 9. Соответственно, тогда в 1279 присутствуют 1, 2 и 9, в 8512 - 1 и 2, в 9761 - 1 и 9. Остаётся число 9486, где из найденных нами цифр есть только 9. Значит, какая-то из цифр 4,8,6 - ещё одна в загаданном числе. Так как 8 и 6 были в других числах, но кол-во коров не прибавлялось, эта цифра - 4. Теперь надо расставить найденные нами 1,2,4 и 9 в верном порядке. В числе 9761 есть бык и корова. Какую-то из этих ролей занимает 1, другую - 9. Допустим, что девятка - бык. Но этот факт опровергается тем, что в 9486 эта цифра стоит на том же месте, а быков нет. Значит, на своём месте стоит единица. Далее возьмёмся за второе число с быком, 1279. Где же здесь бык? Это не 1 - она уже стоит на последнем месте и не 9 - ведь это последнее место занимает единица. И уж тем более это не 7 - её совсем нет в задуманном числе! Значит, бык - это двойка. Далее, составив таблицу 4х4, где в столбик расположены цифры загаданного числа, а в строчку их порядок (1й, 2й...), видим, что 4 окажется первой, а 9 - третьей.
AK = x, BL = y,
тк AB = CD и BC = AD
имеем:
cm = ak = x
kb = md = nx
nd = bl = y
lc = an = ny
ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm)
=> kn = lm
аналогично получаем
kl = nm
Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм
пусть km ∩ ln = O
Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao
из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать
б) пусть ak = cm = 2x
kb = md = 5x
bl = nd = 2y
an = lc = 5y
заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA
Sabcd = 7x * 7y * sinA = 49xysinA
Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA
Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49
ответ: а) доказано; б) 29 / 49.
Итак, ПОБЕДНЫЙ ХОД - ЧИСЛО 4291.