Двое рабочих, работая вместе, могут выполнить работу за 20 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за 3 дня выполняет такую же часть работы, какую второй — за 4 дня?
очевидно, что OA=OB=2*a (там 2 прямоуголных треугольника получается, если из O опустить перпендикуляр на плоскость, угол при вершине 30 гр по условию =>OA= 2*а) . пусть точка пересечения перпендикуляра из О с плоскостью - K. тогда АК=корень (3)*а (как и BK). АBK - равнобедренный . по условию проекции наклонных на плоскость образуют угол 120 градусов. запуливаем теорему косинусов для ABK и получаем, что AB^2=BK^2+AK^2-2*BK*AK*cos120гр. это ответ (вообще сами досчитайте, там все известно) . можно без косинусов. опустим из К высоту на AB. т. к ABK - равнобедренный, то высота является и биссектриссой, т. е она поделили угол в 120 гр пополам. пусть T - основание высоты. тогада имеем KTA 0 прямоуголный с углом в 30 гр (90-60). KA -гипотенуза. зная ее длину найдем AT = 3/2*a. AB=2*AT=3*a
F(x)=2^(1/(x-6)) Ф-ція f(x) є неперервною в т. х_0, якщо lim_(x->x_0) f(x) = f(x_0) lim_(x->6) 2^(1/(x-6)) lim_(x->6-) 2^(1/(x-6)) = 1 (зліва) lim_(x->6+) 2^(1/(x-6)) = неск (зправа) В т. х_0=6 - розрив ф-ції - тобто вона не є неперервною.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6) f(0)=1/2^(1/6) Ф-ція є неперевною в т.х_0=0
очевидно, что OA=OB=2*a (там 2 прямоуголных треугольника получается, если из O опустить перпендикуляр на плоскость, угол при вершине 30 гр по условию =>OA= 2*а) . пусть точка пересечения перпендикуляра из О с плоскостью - K. тогда АК=корень (3)*а (как и BK). АBK - равнобедренный . по условию проекции наклонных на плоскость образуют угол 120 градусов. запуливаем теорему косинусов для ABK и получаем, что AB^2=BK^2+AK^2-2*BK*AK*cos120гр. это ответ (вообще сами досчитайте, там все известно) . можно без косинусов. опустим из К высоту на AB. т. к ABK - равнобедренный, то высота является и биссектриссой, т. е она поделили угол в 120 гр пополам. пусть T - основание высоты. тогада имеем KTA 0 прямоуголный с углом в 30 гр (90-60). KA -гипотенуза. зная ее длину найдем AT = 3/2*a. AB=2*AT=3*a
Ф-ція f(x) є неперервною в т. х_0, якщо lim_(x->x_0) f(x) = f(x_0)
lim_(x->6) 2^(1/(x-6))
lim_(x->6-) 2^(1/(x-6)) = 1 (зліва)
lim_(x->6+) 2^(1/(x-6)) = неск (зправа)
В т. х_0=6 - розрив ф-ції - тобто вона не є неперервною.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6)
f(0)=1/2^(1/6)
Ф-ція є неперевною в т.х_0=0
lim_(x->6-) 2^(1/(x-6)) :
f(4)=0,7
f(4,5)=0,6
f(5)=0,5
f(5,5)=0,25
f(5,7)0,99
lim_(x->6-) 2^(1/(x-6))=0
lim_(x->6+) 2^(1/(x-6)):
f(10)=1,18
f(9)=1,2
f(8)=1,4
f(7)=2
f(6,5)=4
f(6,4)=5,6
f(6,3)=10
f(6,2)=32
f(6,1)=1024
f(6,05)=1048576
lim_(x->6+) 2^(1/(x-6)) = неск.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6)
f(0)=1/2^(1/6)
Рахуються, як звичайний вираз.