Дядя ваня увеличил размеры своего прямоугольного дачного участка на 3м по длине и 3м по ширине. площадь участка увеличилась на 48 м². определите длину забора вокруг получившегося участка.
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
Два круга пересекаются и у них общая хорда АВ.
Один круг с центром О₁ и радиусом О₁А=О₁В=R₁.
Второй круг с центром О₂ и радиусом О₂А=О₂В=R₂.
Градусная мера дуги измеряется градусной мерой центрального угла.
Значит <АО₁В=60° и <АО₂В=120°.
Из ΔАО₁В по т.косинусов найдем АВ:
АВ²=R₁²+R₁²-2R₁*R₁*cos 60=2R₁²-2R₁²*1/2=R₁²
Аналогично из ΔАО₂В по т.косинусов найдем АВ:
АВ²=R₂²+R₂²-2R₂*R₂*cos 120=2R₁²-2R₁²*(-1/2)=3R₂².
Приравниваем R₁²=3R₂²
Площадь первого круга S₁=πR₁²=π*3R₂²
Площадь второго круга S₂=πR₂²
Отношение площадей S₁/S₂=π*3R₂²/πR₂²=3/1
ответ: 3:1
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2
N(2;-1;5/2)
MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2
ответ, разумеется, такой же: длина MN равна 1,5.