Первый участок - х (га) Второй участок - 2/3х (га) Третий участок - (1/2 * 2/3)х = 1/3х (га) Всё поле - 480 (га)
Уравнение: х + 2/3х + 1/3х = 480 2х = 480 х = 480 : 2 х = 240 (га) - площадь первого участка 2/3 * 240 = 240 : 3 * 2 = 160 (га) - площадь второго участка 1/2 * 160 = 160 : 2 = 80 (га) - площадь третьего участка Проверка: 240 + 160 + 80 = 480 (га) - площадь всего поля Вiдповiдь: 240 га, 160 га, 80 га.
Из точки М проведен перпендикуляр МD, равный 6 см., к плоскости квадрата АВСD. Наклонная МВ образует с плоскостью квадрата угол 60°. Доказать, что треугольники МАВ и МСВ прямоугольные. Найдите сторону квадрата. Докажите, что треугольник АВD является проекцией треугольника МАВ на плоскость квадрата, и найдите его площадь.
рисунок к задаче 196 Угол между прямой и плоскостью - это угол между этой прямой и её проекцией на эту плоскость. Т.е. ∠МВD=60°.
Рассмотрим наклонную МС, проекцию CD и прямую в ВС. Угол ВСD прямой (угол квадрата). По теореме о трех перпендикулярах угол МСВ тоже равен 90 градусов. А треугольник МСВ прямоугольный. Аналогично треугольник МАВ тоже является прямоугольным.
MD перпендикулярна плоскости квадрата, а значит перпендикулярна и любой прямой (BD к примеру) в этой плоскости. Рассмотрим прямоугольный треугольник МВD. В нем:
BD=MD * ctg60°
BD=6 * (корень из 3)/3 BD=2 корня из 3
Известно, что диагональ квадтрата больше его стороны в корень из 2 раз, поэтому:
АВ=BD/(корень из 2)
АВ=(2 корня из 3)/(корень из 2)=корень из 6
Две вершины треугольника АМВ уже лежат в плоскости АВСD, а точка М ортогонально спроектировна в точку D. Поэтому треугольник АBD является проекцией треугольника АМВ. SABD=1/2 * АВ2=3
Второй участок - 2/3х (га)
Третий участок - (1/2 * 2/3)х = 1/3х (га)
Всё поле - 480 (га)
Уравнение: х + 2/3х + 1/3х = 480
2х = 480
х = 480 : 2
х = 240 (га) - площадь первого участка
2/3 * 240 = 240 : 3 * 2 = 160 (га) - площадь второго участка
1/2 * 160 = 160 : 2 = 80 (га) - площадь третьего участка
Проверка: 240 + 160 + 80 = 480 (га) - площадь всего поля
Вiдповiдь: 240 га, 160 га, 80 га.
Из точки М проведен перпендикуляр МD, равный 6 см., к плоскости квадрата АВСD. Наклонная МВ образует с плоскостью квадрата угол 60°. Доказать, что треугольники МАВ и МСВ прямоугольные. Найдите сторону квадрата. Докажите, что треугольник АВD является проекцией треугольника МАВ на плоскость квадрата, и найдите его площадь.
рисунок к задаче 196 Угол между прямой и плоскостью - это угол между этой прямой и её проекцией на эту плоскость. Т.е. ∠МВD=60°.
Рассмотрим наклонную МС, проекцию CD и прямую в ВС. Угол ВСD прямой (угол квадрата). По теореме о трех перпендикулярах угол МСВ тоже равен 90 градусов. А треугольник МСВ прямоугольный. Аналогично треугольник МАВ тоже является прямоугольным.
MD перпендикулярна плоскости квадрата, а значит перпендикулярна и любой прямой (BD к примеру) в этой плоскости. Рассмотрим прямоугольный треугольник МВD. В нем:
BD=MD * ctg60°
BD=6 * (корень из 3)/3 BD=2 корня из 3
Известно, что диагональ квадтрата больше его стороны в корень из 2 раз, поэтому:
АВ=BD/(корень из 2)
АВ=(2 корня из 3)/(корень из 2)=корень из 6
Две вершины треугольника АМВ уже лежат в плоскости АВСD, а точка М ортогонально спроектировна в точку D. Поэтому треугольник АBD является проекцией треугольника АМВ. SABD=1/2 * АВ2=3
Пошаговое объяснение: