При каком значении параметра a неравенство (a−x)(7−x)≤0 имеет единственное решение?
(a−x)(7−x)≤0
(х-a)(x-7)≤0
В соответствии с методом интервалов, если направлена парабола ветвями вверх, а решаемое неравенство меньше 0, то ответом является промежуток между корнями. В данном случае:
[a;7], если a<7
[7;a], если a>7
если a=7, то неравенство примет вид (x-7)^2≤0. Так как квадрат отрицательным числом выражаться не может, то единственная возможность для решения х-7=0, откуда х=7. Единственное решение при а=7.
Пловец по течению быстрой реки проплыл 180 м. Когда же он поплыл против течения, то за такое же время его снесло течением на 60 м ниже по течению. Во сколько раз скорость течения реки больше скорости пловца?
РЕШЕНИЕ: Пусть скорость пловца х, а скорость течения у.
В первый раз за время t он проплыл расстояние 180=(y+x)t.
Во второй раз за такое же время t его снесло на расстояние 60=(y-x)t.
Выражаем t в обоих случаях: 180/(y+x)=60/(y-x)
3/(y+x)=1/(y-x)
3(у-x)=(у+x)
3y-3x=x+y
2y=4x
y=2x
Скорость течения реки больше скорости пловца в 2 раза.
8/Задание № 4:
При каком значении параметра a неравенство (a−x)(7−x)≤0 имеет единственное решение?
(a−x)(7−x)≤0
(х-a)(x-7)≤0
В соответствии с методом интервалов, если направлена парабола ветвями вверх, а решаемое неравенство меньше 0, то ответом является промежуток между корнями. В данном случае:
[a;7], если a<7
[7;a], если a>7
если a=7, то неравенство примет вид (x-7)^2≤0. Так как квадрат отрицательным числом выражаться не может, то единственная возможность для решения х-7=0, откуда х=7. Единственное решение при а=7.
ОТВЕТ: 7
8/Задание № 5:
Пловец по течению быстрой реки проплыл 180 м. Когда же он поплыл против течения, то за такое же время его снесло течением на 60 м ниже по течению. Во сколько раз скорость течения реки больше скорости пловца?
РЕШЕНИЕ: Пусть скорость пловца х, а скорость течения у.
В первый раз за время t он проплыл расстояние 180=(y+x)t.
Во второй раз за такое же время t его снесло на расстояние 60=(y-x)t.
Выражаем t в обоих случаях: 180/(y+x)=60/(y-x)
3/(y+x)=1/(y-x)
3(у-x)=(у+x)
3y-3x=x+y
2y=4x
y=2x
Скорость течения реки больше скорости пловца в 2 раза.
ОТВЕТ: в 2 раза