Верные утверждения: 1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны. По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ: 2) Любые два прямоугольных треугольника подобны. НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника. НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту. НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
Если голосование, то нужно, чтобы два решения были точно верные. Дано:р1 - вероятность принятия верного решения первым человекомр2 - вероятность принятия верного решения вторым человекомр3=0,5 - вероятность принятия верного решения третьим человекомq1=1-р - вероятность ошибки первого человекаq2=1-р - вероятность ошибки второго человекаq3=р3 - вероятность ошибки третьего человека (т.к. вероятность удачи/неудачи при подбрасывании монеты 1/2)Теперь запишем условия голосования:Верное решение будет принято, если ХОТЯ БЫ два решения из трёх будут верные.Первое выражение: P = p1*p2*p3 + p1*p2*q3 + p1*q2*p3 + q1*p2*p3Второе: Р = 1 - (q1*q2*q3 + q1*q2*p3 + q1*p2*q3 + p1*q2*3q)1) тут мы просуммировали все вероятности удачного исхода2) тут мы отняли от суммарное вероятности всех событий (1) вероятность неудочных исходов.Оба решения верные и по идее ответ должен получиться в любом из них таким же, как и во втором
1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны.
По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ:
2) Любые два прямоугольных треугольника подобны.
НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника.
НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту.
НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.