В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Anzhelika0624
Anzhelika0624
14.01.2023 02:53 •  Математика

Хто может это решить вариант номер 14​


Хто может это решить вариант номер 14​

Показать ответ
Ответ:
tokufoveru
tokufoveru
01.01.2020 22:48

Находим

dx/dt=-6Asin6t+6Bcos6t и (d^2 x)/(dt^2 )=-36Acos6t-36Bsin6t

Выполняем подстановку: (d^2 x)/(dt^2 )+36x=0

-36(Acos6t+Bsin6t)+36x=0

-36x+36x=0

В результате получили тождество, а это означает, что функция x=Acos6t+Bsin6t является решением указанного дифференциального уравнения (d^2 x)/(dt^2 )+36x=0. Подставляем π/4 в x: Acos 3π/2+Bsin 3π/2=-2 и получаем B=2. Подставляем π/4 в dx/dt:-6Asin 3π/2+6Bcos 3π/2=12√3 и получаем A=2√3.

ответ: x=2√3 cos6t+2sin6t частное решение.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
NikoBellic99
NikoBellic99
23.07.2021 20:06

Находим

dx/dt=-6Asin6t+6Bcos6t и (d^2 x)/(dt^2 )=-36Acos6t-36Bsin6t

Выполняем подстановку: (d^2 x)/(dt^2 )+36x=0

-36(Acos6t+Bsin6t)+36x=0

-36x+36x=0

В результате получили тождество, а это означает, что функция x=Acos6t+Bsin6t является решением указанного дифференциального уравнения (d^2 x)/(dt^2 )+36x=0. Подставляем π/4 в x: Acos 3π/2+Bsin 3π/2=-2 и получаем B=2. Подставляем π/4 в dx/dt:-6Asin 3π/2+6Bcos 3π/2=12√3 и получаем A=2√3.

ответ: x=2√3 cos6t+2sin6t частное решение.

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота