Пусть ε - сколь угодно малое положительное число. Нужно доказать, что найдётся номер N такой, что для всех номеров n>N будет выполняться неравенство /an-A/<ε, или аналогичное ему двойное неравенство A-ε<an<A+ε. В нашем случае это неравенство имеет вид 1/6-ε<(n+4)/(6*n+3)<1/6+ε. Решая сначала неравенство 1/6-ε<(n+4)/(6*n+3), находим, что оно выполняется при любых значениях n. Решая затем неравенство (n+4)//(6*n+3)<1/6+ε, находим n>7/(12*ε)-1/2. В качестве номера N можно взять либо само число 7/(12*ε)-1/2, если это число натуральное, либо ближайшее к нему меньшее его натуральное число. Таким образом, по числу ε найден соответствующий ему номер N, а потому утверждение доказано.
ответ: утверждение доказано.
Пошаговое объяснение:
Пусть ε - сколь угодно малое положительное число. Нужно доказать, что найдётся номер N такой, что для всех номеров n>N будет выполняться неравенство /an-A/<ε, или аналогичное ему двойное неравенство A-ε<an<A+ε. В нашем случае это неравенство имеет вид 1/6-ε<(n+4)/(6*n+3)<1/6+ε. Решая сначала неравенство 1/6-ε<(n+4)/(6*n+3), находим, что оно выполняется при любых значениях n. Решая затем неравенство (n+4)//(6*n+3)<1/6+ε, находим n>7/(12*ε)-1/2. В качестве номера N можно взять либо само число 7/(12*ε)-1/2, если это число натуральное, либо ближайшее к нему меньшее его натуральное число. Таким образом, по числу ε найден соответствующий ему номер N, а потому утверждение доказано.