Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
1)S=v*t = 500*6= 3000 метров(Сколько метров автобус со скоростью 500м/мин проедет за 6 минут?)
2)v= S/t = 434/7= 62 км/час(С какой скоростью ехала машина,если за 7 часов она проехала 434 км?)
3)t = S/v= 96/48 = 2 часа(Сколько времени потратил экскаватор двигаясь со скоростью 48 км/час,если он проехал 96 км?)
Пошаговое объяснение:
1)Для того,чтобы найти расстояние(S) надо скорость(v) умножить на время(t).
2)Для того,чтобы найти скорость(v) нужно расстояние(S) поделить на время(t).
3)Для того,чтобы найти время(t) нужно расстояние (S) поделить на скорость (v).
После решения,в скобках я написал вопрос к каждому решению.
Пошаговое объяснение:
сделай ответ лучшим
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33