Наибольшая диагональ D правильной шестиугольной призмы - это гипотенуза прямоугольного треугольника, где катеты - боковое ребро, равное высоте призмы H, и диагональ d основы (это шестиугольник), равная двум сторонам основы (или двум радиусам описанной окружности). H = D*sin 60° = 12*(√3/2) = 6√3 см. d = D*cos 60° = 12*0,5 = 6 см. Сторона основы призмы равна половине d: a = d/2 = 6/2 = 3 см. Площадь основы (шестиугольника) равна: So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см². Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Обозначим высоту каждой части х, высота большого конуса 3х Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников: радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x; V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x; V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x; По условию V₃- V₂=38 или (27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
H = D*sin 60° = 12*(√3/2) = 6√3 см.
d = D*cos 60° = 12*0,5 = 6 см.
Сторона основы призмы равна половине d:
a = d/2 = 6/2 = 3 см.
Площадь основы (шестиугольника) равна:
So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см².
Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников:
радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x;
V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x;
По условию
V₃- V₂=38
или
(27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
Значит
V₁( малого конуса)=(1/3)·πr²x=(1/3)·6=2;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x=(8/3)·6=16
V( средней части)=V₂-V₁=16-2=14.
О т в е т. 14