В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Pipisk
Pipisk
08.03.2021 19:49 •  Математика

Измерте с транспортира угол, начерченый вами пунктом 1. запишите градусную меру вашего угла, сравните ваш угол с прямым углом. ​а если сможете то на верху фотка, то сделайте всё !

Показать ответ
Ответ:
инкара10
инкара10
02.11.2020 01:20
Все идет по формуле 2х
День - Количество лилий
1 - 1 
2 - 2 
3 - 4
4 - 8
5 - 16
6 - 32
7 - 64
8 - 128 
9 - 254
10 - 512 
11 - 1024 
12 - 248
13 - 4096
14 - 8 192
15 - 16 384
16 - 32 768
17 - 65 536
18 - 131 072
19 - 262 144
20 - 524 288
21 - 1 048 576
22 -  2 097 152
23 - 4 194 304
24 - 8 388 608
25 - 16 777 216

41 - 1 099 511 627 776
42 - 2 199 023 255 552
Ну видим, что предыдущий день равняется половине следующего.
Значит, любой конечный день равен двойному предыдущему дню.
Раз каждый день число увеличивается в 2 раза, то просто предыдущее количество лилий умножаем на 2. Вот так и дойдешь до 30 дня.
0,0(0 оценок)
Ответ:
vladishe1
vladishe1
24.01.2021 21:04
6. Направляющие косинусы вектора

Направление вектора в пространстве определяется углами, , которые вектор составляет с осями координат Косинусы этих углов называются направляющими косинусами вектора.

С выведенной ранее формулы (45) для проекции вектора легко получить выражения для направляющих косинусов. Пусть дан вектор . Тогда

Отсюда находим выражения для направляющих косинусов:

Так как по формуле , то

Возводя почленно каждое из равенств формул (60) в квадрат и складывая, найдем зависимость между направляющими косинусами вектора:

откуда

т. e. сумма квадратов направляющих косинусов любого вектора равна единице.

Замечание. Легко видеть, что проекции любого единичного вектора на оси координат соответственно совпадают с его направляющими косинусами и, следовательно, его разложение по осям координат имеет вид

Пример. Найти косинусы углов, которые вектор АВ составляет с осями координат, если .

Решение. Находим проекции вектора АВ на оси Ох, Оу, Oz:

По формуле (58) находим модуль вектора по формулам (60) находим направляющие косинусы вектора:
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота