Старинная русская мера массы пуд равна 16,38 кг. Округлите это значение до целых,до десятых. Старинная русская мера длины верста равна 1067м.Округлите это значение до десятков,до сотен.Старинная русская мера длины сажень равна 2,13м. Округлите это значение до целых ,до метров
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
Старинная русская мера массы пуд равна 16,38 кг. Округлите это значение до целых,до десятых. Старинная русская мера длины верста равна 1067м.Округлите это значение до десятков,до сотен.Старинная русская мера длины сажень равна 2,13м. Округлите это значение до целых ,до метров
Решение
(до целых) пуд равен 16,38 кг = 16 кг
(до десятых) пуд равен 16,38 кг = 16,4 кг
(до десятков) длина версты равна 1067м = 1070 м
(до сотен) длина версты равна 1067м = 1100 м
(до целых) длина сажени равна 2,13м = 2м
(до метров) длина сажени равна 2,13м = 2м