Маємо правильну чотирикутну піраміду SABCD, в основі якої лежить правильний чотирикутник (квадрат) ABCD.
Висота SO правильної трикутної піраміди проектується у центр квадрата ABCD – точку перетину діагоналей AC і BD. Оскільки висота SO перпендикулярна до площини основи (квадрата ADCD), то вона перпендикулярна до кожної прямої, що лежить в цій площині.
Проведемо відрізок ОК⊥ДС . Оскільки SO⊥ОК, ОК⊥ДС, то за теоремою «про три перпендикуляри» SК⊥ДС. (SК - апофема Т.як ΔSCD - рівнобедрений, то SК- медіана (ДК=КС) ).
Звідси слідує, що ∠SКO=60° – лінійний кут двогранного кута при основі – кут нахилу бічної грані до площини основи. ∠SOК=90°)
1) Висота піраміди
ΔSКO (∠О=90°): ∠ОSК = 30°,Катет прямокутного трикутника, що лежить проти кута в 30 °, дорівнює половині гіпотенузи ⇒ ОК=1/2*SK = 3см.
За теоремою Піфагора: SО²= SК²-ОК²
SО=√(36-9)=√27=3√3см
2) Ребро основи піраміди
Так як ABCD - правильний чотирикутник (квадрат), то АД=2*ОК=2*3=6см
1)У Кати красная , у Марины синего; У Светы зелёная
2) У Олега 4; У Кости 5; У Игоря 3
3) Маша с ведерком ;Настя с корзиной ;Аня с лукошком
4)Таня занимается танцами; Катя занимается пением; Марина занимается вышивкой
5) Витя рисовал пастельными мелками пейзаж
Серёжа рисовал акварелью портрет
Коля рисовал гуашью натюрморт
6) слесарь Иванов
Токарь Петров
Сварщик Семёнов
7) Соня занимается гимнастикой днём
Таня занимается плаванием утром
Лена занимается лыжным спортом вечером
8) Сын поймал леща
Отец поймал окуня
Дедушка поймал карася
1) В - 3√3 см
2) Б - 6 см
3) Г - 3√5 см
Пошаговое объяснение:
Маємо правильну чотирикутну піраміду SABCD, в основі якої лежить правильний чотирикутник (квадрат) ABCD.
Висота SO правильної трикутної піраміди проектується у центр квадрата ABCD – точку перетину діагоналей AC і BD. Оскільки висота SO перпендикулярна до площини основи (квадрата ADCD), то вона перпендикулярна до кожної прямої, що лежить в цій площині.
Проведемо відрізок ОК⊥ДС . Оскільки SO⊥ОК, ОК⊥ДС, то за теоремою «про три перпендикуляри» SК⊥ДС. (SК - апофема Т.як ΔSCD - рівнобедрений, то SК- медіана (ДК=КС) ).
Звідси слідує, що ∠SКO=60° – лінійний кут двогранного кута при основі – кут нахилу бічної грані до площини основи. ∠SOК=90°)
1) Висота піраміди
ΔSКO (∠О=90°): ∠ОSК = 30°,Катет прямокутного трикутника, що лежить проти кута в 30 °, дорівнює половині гіпотенузи ⇒ ОК=1/2*SK = 3см.
За теоремою Піфагора: SО²= SК²-ОК²
SО=√(36-9)=√27=3√3см
2) Ребро основи піраміди
Так як ABCD - правильний чотирикутник (квадрат), то АД=2*ОК=2*3=6см
3) Бічне ребро піраміди
ΔSКС(∠К=90°): За теоремою Піфагора SС² = SК²+ КС²
SС = √(36+9)=√45=3√5см